Publications by authors named "Richard Carmouche"

Article Synopsis
  • Herbal remedies, particularly fenugreek seeds, are gaining traction for their potential to treat metabolic issues like obesity and Type 2 Diabetes by influencing the microbiome and host metabolism.
  • A study using metabolomics on mice demonstrated that fenugreek significantly altered gut microbiome composition, particularly increasing beneficial bacteria linked to health.
  • Additionally, fenugreek supplementation led to notable changes in metabolic processes in both the intestines and liver, affecting pathways such as cholesterol metabolism and carnitine biosynthesis, which may contribute to its health benefits.
View Article and Find Full Text PDF

Fenugreek (Trigonella foenum-graecum) is an annual herbaceous plant and a staple of traditional health remedies for metabolic conditions including high cholesterol and diabetes. While the mechanisms of the beneficial actions of fenugreek remain unknown, a role for intestinal microbiota in metabolic homeostasis is likely. To determine if fenugreek utilizes intestinal bacteria to offset the adverse effects of high fat diets, C57BL/6J mice were fed control/low fat (CD) or high fat (HFD) diets each supplemented with or without 2% (w/w) fenugreek for 16 weeks.

View Article and Find Full Text PDF

(moringa) has been traditionally used for the treatment of diabetes and in water purification. We previously showed that moringa seed extract (MSE), standardized to its primary bioactive isothiocyanate (MIC-1), modulated inflammatory and antioxidant signaling pathways . To understand the efficacy and mechanisms of action of MSE , we incorporated MSE into the diets of normal and obese C57Bl/6J male mice fed a standard low-fat diet or a very high-fat diet for 12 wk, respectively.

View Article and Find Full Text PDF

Maternal obesity is known to predispose offspring to metabolic and neurodevelopmental abnormalities. While the mechanisms underlying these phenomena are unclear, high fat diets dramatically alter intestinal microbiota, and gut microbiota can impact physiological function. To determine if maternal diet-induced gut dysbiosis can disrupt offspring neurobehavioral function, we transplanted high fat diet- (HFD) or control low fat diet-associated (CD) gut microbiota to conventionally-housed female mice.

View Article and Find Full Text PDF

Methylation of CpG dinucleotides is generally associated with epigenetic silencing of transcription and is maintained through cellular division. Multiple CpG sequences are rare in mammalian genomes, but frequently occur at the transcriptional start site of active genes, with most clusters of CpGs being hypomethylated. We reported previously that the proximal region of the trefoil factor 1 (TFF1, also known as pS2) and oestrogen receptor alpha (ERalpha) promoters could be partially methylated by treatment with deacetylase inhibitors, suggesting the possibility of dynamic changes in DNA methylation.

View Article and Find Full Text PDF

Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with transcriptionally silent condensed chromatin.

View Article and Find Full Text PDF

Unliganded (apo-) estrogen receptor alpha (ERalpha, NR3A1) is classically considered as transcriptionally unproductive. Reassessing this paradigm demonstrated that apo-human ERalpha (ERalpha66) and its N-terminally truncated isoform (ERalpha46) are both predominantly nuclear transcription factors that cycle on the endogenous estrogen-responsive pS2 gene promoter in vivo. Importantly, isoform-specific consequences occur in terms of poising the promoter for transcription, as evaluated by determining (i) the engagement of several cofactors and the resulting nucleosomal organization; and (ii) the CpG methylation state of the pS2 promoter.

View Article and Find Full Text PDF