Proc Natl Acad Sci U S A
December 2024
Combinatorial networks of cell adhesion molecules and cell surface receptors drive fundamental aspects of neural circuit establishment and function. However, the intracellular signals orchestrated by these cell surface complexes remain less understood. Here, we report that the Gα12/13 pathway lies downstream of several GPCRs with critical synaptic functions.
View Article and Find Full Text PDFLatrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol ) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments.
View Article and Find Full Text PDFCadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available.
View Article and Find Full Text PDFAdhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear.
View Article and Find Full Text PDFTerminally differentiated primary cells represent a valuable in vitro model to study signaling events associated within a specific tissue. Quantitative proteomic methods using metabolic labeling in primary cells encounter labeling efficiency issues hindering the use of these cells. Here we developed a method to quantify the proteome and phosphoproteome of cultured neurons using (15)N-labeled brain tissue as an internal standard and applied this method to determine how an inhibitor of an excitatory neural transmitter receptor, phencyclidine (PCP), affects the global phosphoproteome of cortical neurons.
View Article and Find Full Text PDF