When designing electrodes and probes for brain-machine interfaces, one of the challenges faced involves minimizing the brain-tissue response, which would otherwise create an environment that is detrimental for the accurate functioning of such probes. Following the implantation process, the brain reacts with a sterile inflammation response and resulting astrocytic glial scar formation, potentially resulting in neuronal cell loss around the implantation site. Such alterations in the naïve brain tissue can hinder both the quality of neuronal recordings, and the efficacy of deep-brain stimulation.
View Article and Find Full Text PDFPre-clinical deep-brain stimulation (DBS) research has observed a growing interest in the use of portable stimulation devices that can be carried by animals. Not only can such devices overcome many issues inherent with a cable tether, such as twisting or snagging, they can also be utilized in a greater variety of arenas, including enclosed or large mazes. However, these devices are not inherently designed for water-maze environments, and their use has been restricted to individually-housed rats in order to avoid damage from various social activities such as grooming, playing, or fighting.
View Article and Find Full Text PDFWith the continued miniaturisation of portable embedded systems, wireless EEG recording techniques are becoming increasingly prevalent in animal behavioural research. However, in spite of their versatility and portability, they have seldom been used inside water-maze tasks designed for rats. As such, a novel 3D printed implant and waterproof connector is presented, which can facilitate wireless water-maze EEG recordings in freely-moving rats, using a commercial wireless recording system (W32; Multichannel Systems).
View Article and Find Full Text PDFSpatial cognition research in rodents typically employs the use of maze tasks, whose attributes vary from one maze to the next. These tasks vary by their behavioral flexibility and required memory duration, the number of goals and pathways, and also the overall task complexity. A confounding feature in many of these tasks is the lack of control over the strategy employed by the rodents to reach the goal, e.
View Article and Find Full Text PDF