Publications by authors named "Richard C Law"

One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states.

View Article and Find Full Text PDF

A long-standing observation is that in fast-growing cells, respiration rate declines with increasing growth rate and is compensated by an increase in fermentation, despite respiration being more efficient than fermentation. This apparent preference for fermentation even in the presence of oxygen is known as aerobic glycolysis, and occurs in bacteria, yeast, and cancer cells. Considerable work has focused on understanding the potential benefits that might justify this seemingly wasteful metabolic strategy, but its mechanistic basis remains unclear.

View Article and Find Full Text PDF

Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy.

View Article and Find Full Text PDF

Fluxomics offers a direct readout of metabolic state but relies on indirect measurement. Stable isotope tracers imprint flux-dependent isotope labeling patterns on metabolites we measure; however, the relationship between labeling patterns and fluxes remains elusive. Here we innovate a two-stage machine learning framework termed ML-Flux that streamlines metabolic flux quantitation from isotope tracing.

View Article and Find Full Text PDF

Glycolysis is a universal metabolic process that breaks down glucose to produce adenosine triphosphate (ATP) and biomass precursors. The Entner-Doudoroff (ED) pathway is a glycolytic pathway that parallels textbook glycolysis but yields half as much ATP. Accordingly, in organisms that possess both glycolytic pathways (for example, Escherichia coli), its raison d'être remains a mystery.

View Article and Find Full Text PDF

Complete understanding of a biological system requires quantitation of metabolic fluxes that reflect its dynamic state. Various analytical chemistry tools, enzyme-based probes, and microscopy enable flux measurement. However, any method alone falls short of comprehensive flux quantitation.

View Article and Find Full Text PDF

Hypertensive disease of pregnancy (HDP) with placental insufficiency is the most common cause of fetal growth restriction (FGR) in the developed world. Despite the known negative consequences of HDP both to the mother and fetus, little is known about the longitudinal placental changes that occur as HDP progresses in pregnancy. This is because longitudinal sampling of human placentae during each gestation is impossible.

View Article and Find Full Text PDF