Ions attributed to lipids and phospholipids are directly observed by desorption from whole bacteria using intact cell (IC) matrix-assisted laser desorption-ionization (MALDI) Fourier transform mass spectrometry (FTMS). Saccharomyces cerevisiae are grown in rich media broth, concentrated, and applied directly to the MALDI surface without lysis or chemical treatment. FTMS of MALDI ions gives excellent signal to noise ratios with typical resolving powers of 90,000 and mass precision better than 0.
View Article and Find Full Text PDFIn the present paper, results demonstrating the significant advantages of matrix-assisted laser desorption/ionization (MALDI) analysis of whole cell samples of bacteria grown on double isotopically-depleted (13C and 15N) media are presented. It is shown that several advantages accrue for MALDI with a 9.4 T Fourier transform mass spectrometer (FTMS).
View Article and Find Full Text PDFRecently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. Here, the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells is reported.
View Article and Find Full Text PDFWe have shown in previous work that extracts of grape seeds (GSE) and skins, grape juice, and many red wines exhibit endothelium-dependent relaxing (EDR) activity in vitro. This EDR activity involves endothelial nitric oxide (NO) release and subsequent increase in cyclic GMP levels in the vascular smooth muscle cells. The NO/cyclic GMP pathway is known to be involved in many cardiovascular-protective roles.
View Article and Find Full Text PDF