Flavin semiquinones are common intermediate redox states in flavoproteins, and thus, knowledge of their electronic structure is essential for fully understanding their chemistry and chemical versatility. In this contribution, we use a combination of high-field electron nuclear double resonance spectroscopy and selective deuterium labeling of flavin mononucleotide (FMN) with subsequent incorporation as cofactor into a variant LOV domain to extract missing traits of the electronic structure of a protein-bound FMN radical. From these experiments, precise values of small proton hyperfine and deuterium nuclear quadrupole couplings could be extracted.
View Article and Find Full Text PDFFlavoproteins often employ radical mechanisms in their enzymatic reactions. This involves paramagnetic species, which can ideally be investigated with electron paramagnetic resonance (EPR) spectroscopy. In this chapter we focus on the example of flavin-based photoreceptors and discuss, how different EPR methods have been used to extract information about the flavin radical's electronic state, its binding pocket, electron-transfer pathways, and about the protein's tertiary and quaternary structure.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
August 2013
Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own.
View Article and Find Full Text PDFExploring protein-cofactor interactions on a molecular level is one of the major challenges in modern biophysics. Based on structural data alone it is rarely possible to identify how subtle interactions between a protein and its cofactor modulate the protein's reactivity. In the case of enzymatic processes in which paramagnetic molecules play a certain role, EPR and related methods such as ENDOR are suitable techniques to unravel such important details.
View Article and Find Full Text PDF