Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction.
View Article and Find Full Text PDFThe Early-Response to Dehydration six-like (ERD6l) is one of the largest families of sugar transporters in plants, however, is also one of the less studied with very few members characterized. In this work, we identified 18 members of the grapevine ERD6l family, analyzed their promoters and putative topology and additionally functionally characterized the member VvERD6l13. VvERD6l13 was strongly up-regulated in grape berries infected with Botrytis cinerea and Erysiphe necator in cv.
View Article and Find Full Text PDFThe involvement of aquaporins in rain-induced sweet cherry ( L.) fruit cracking is an important research topic with potential agricultural applications. In the present study, we performed the functional characterization of PaPIP1;4, the most expressed aquaporin in sweet cherry fruit.
View Article and Find Full Text PDFThe newly-identified SWEETs are high-capacity, low-affinity sugar transporters with important roles in numerous physiological mechanisms where sugar efflux is critical. SWEETs are desirable targets for manipulation by pathogens and their expression may be transcriptionally reprogrammed during infection. So far, few plant SWEET transporters have been functionally characterized, especially in grapevine.
View Article and Find Full Text PDFThe need to support food labelling has driven to the development of PCR-based techniques suitable for food analysis. DNA-based markers have been successfully employed for varietal tracing in Protected Designation of Origin (PDO) olive oils. In this study, we report a fast, sensitive, and easy-to-use strategy for PDO olive varietal identification.
View Article and Find Full Text PDFWater scarcity is associated with extreme temperatures and high irradiance, and significantly and increasingly affects grapevine yield and quality. In this context, the foliar application of kaolin, a chemically inert mineral that greatly reflects ultraviolet and infrared radiations, as well as, in part, photosynthetically active radiation, has recently been shown to decrease photoinhibition in mature leaves. Here, the influence of this particle film on grapevine leaf metabolome and carbohydrate metabolism was evaluated.
View Article and Find Full Text PDFPostharvest dehydration causes changes in texture, color, taste and nutritional value of food due to the high temperatures and long drying times required. In grape berries, a gradual dehydration process is normally utilized for raisin production and for making special wines. Here we applied a raisin industry-mimicking dehydration process for eleven days at 50°C to intact berry clusters from cv.
View Article and Find Full Text PDFGrape berry development and ripening depends mainly on imported photosynthates from leaves, however, fruit photosynthesis may also contribute to the carbon economy of the fruit. In this study pulse amplitude modulated chlorophyll fluorescence imaging (imaging-PAM) was used to assess photosynthetic properties of tissues of green grape berries. In particular, the effect of the saturation pulse (SP) intensity was investigated.
View Article and Find Full Text PDF