Publications by authors named "Richard Bibb"

Inclusive thermal comfort solutions should accommodate the need of clinical groups such as people with Multiple Sclerosis (pwMS), who experience abnormal thermal sensitivity. The aim of this study was to develop high-density body maps of temperature sensitivity in pwMS to inform the design of patient-centred personal comfort systems. Fourteen pwMS (6 M/8 F; 48.

View Article and Find Full Text PDF

Semi-solid extrusion (SSE) 3D printing has recently attracted increased attention for its pharmaceutical application as a potential method for small-batch manufacturing of personalised solid dosage forms. It has the advantage of allowing ambient temperature printing, which is especially beneficial for the 3D printing of thermosensitive drugs. In this study, the effects of polymeric compositions (single hydroxypropyl methylcellulose (HPMC) system and binary HPMC + polyvinylpyrrolidone (PVP) system), disintegrant (silicon oxide (SiO)), and active pharmaceutical ingredients (tranexamic acid (TXA) and paracetamol (PAC)) on the printability of semisolid inks and the qualities of SSE printed drug-loaded tablets were investigated.

View Article and Find Full Text PDF

The negative effects of thermal stress on Multiple Sclerosis (MS)' symptoms have long been known. However, the underlying mechanisms of MS heat and cold intolerance remain unclear. The aim of this study was to evaluate body temperatures, thermal comfort, and neuropsychological responses to air temperatures between 12 and 39 °C in people with MS compared to healthy controls (CTR).

View Article and Find Full Text PDF

Skin wetness sensing is important for thermal stress resilience. Individuals with multiple sclerosis (MS) present greater vulnerability to thermal stress; yet, it is unclear whether they present wetness-sensing abnormalities. We investigated the effects of MS on wetness sensing and their modulation with changes in mean skin temperature (T).

View Article and Find Full Text PDF

Three-dimensional (3D) printing allows for the design and printing of more complex designs than traditional manufacturing processes. For the manufacture of personalised medicines, such an advantage could enable the production of personalised drug products on demand. In this study, two types of extrusion-based 3D printing techniques, semi-solid syringe extrusion 3D printing and fused deposition modelling, were used to fabricate a combi-layer construct (combi-pill).

View Article and Find Full Text PDF

Background: The negative effects of heat and cold on Multiple Sclerosis (MS) have been known for ∼100 years. Yet, we lack patient-centred investigations on temperature sensitivity in persons with MS (pwMS).

Objectives: To evaluate triggers, symptoms, and thermal resilience practices of temperature sensitivity pwMS via a dedicated survey.

View Article and Find Full Text PDF

Background: A noticeable but unknown proportion of people with multiple sclerosis (pwMS) report the sudden experience of wetness on a dry skin site, i.e., phantom wetness.

View Article and Find Full Text PDF

3D printing has the unique ability to produce porous pharmaceutical solid dosage forms on-demand. Although using porosity to alter drug release kinetics has been proposed in the literature, the effects of porosity on the swellable and erodible porous solid dosage forms have not been explored. This study used a model formulation containing hypromellose acetate succinate (HPMCAS), polyethylene oxide (PEO) and paracetamol and a newly developed hot melt droplet deposition 3D printing method, Arburg plastic free-forming (APF), to examine the porosity effects on in vitro drug release.

View Article and Find Full Text PDF

Bioengineered skeletal muscle tissues benefit from dynamic culture environments which facilitate the appropriate provision of nutrients and removal of cellular waste products. Biologically compatible perfusion systems hold the potential to enhance the physiological biomimicry of in vitro tissues via dynamic culture, in addition to providing technological advances in analytical testing and live cellular imaging for analysis of cellular development. To meet such diverse requirements, perfusion systems require the capacity and adaptability to incorporate multiple cell laden constructs of both monolayer and bioengineered tissues.

View Article and Find Full Text PDF

Background: Accurately predicting the risk of diabetic foot ulceration (DFU) could dramatically reduce the enormous burden of chronic wound management and amputation. Yet, the current prognostic models are unable to precisely predict DFU events. Typically, efforts have focused on individual factors like temperature, pressure, or shear rather than the overall foot microclimate.

View Article and Find Full Text PDF

Aims: Incorrectly fitting shoes are implicated in callus formation and a significant proportion of diabetic foot ulcers, yet remain surprisingly prevalent. We review the current shoe fit guidelines for consistency and discuss ways in which technology may assist us in standardising methods of footwear assessment.

Methods: Narrative review.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized by demyelination of the central nervous system (CNS). The exact cause of MS is still unknown; yet its incidence and prevalence rates are growing worldwide, making MS a significant public health challenge. The heterogeneous distribution of demyelination within and between MS patients translates in a complex and varied array of autonomic, motor, sensory and cognitive symptoms.

View Article and Find Full Text PDF

The integration of additive manufacturing (AM) technology within biological systems holds significant potential, specifically when refining the methods utilized for the creation of in vitro models. Therefore, examination of cellular interaction with the physical/physicochemical properties of 3D-printed polymers is critically important. In this work, skeletal muscle (C C ), neuronal (SH-SY5Y) and hepatic (HepG2) cell lines are utilized to ascertain critical evidence of cellular behavior in response to 3D-printed candidate polymers: Clear-FL (stereolithography, SL), PA-12 (laser sintering, LS), and VeroClear (PolyJet).

View Article and Find Full Text PDF

The objective of this study was to determine the effect of plant based antimicrobial solutions specifically tea tree and Manuka oil on facial silicone elastomers. The purpose of this in vitro study was to evaluate the effect of disinfection with plant extract solution on mechanical properties and morphology on the silicone elastomer. Test specimens were subjected to disinfection using tea tree oil, Manuka oil and the bacteria.

View Article and Find Full Text PDF

This paper demonstrates the essential and efficient methods to design, and fabricate optimal vascular network for tissue engineering structures based on their physiological conditions. Comprehensive physiological requirements in both micro and macro scales were considered in developing the optimisation design for complex vascular vessels. The optimised design was then manufactured by stereolithography process using materials that are biocompatible, elastic and surface bio-coatable.

View Article and Find Full Text PDF

Background: This study reviewed the current state of maxillofacial rehabilitation in resource-limited nations.

Method: A rigorous literature review was undertaken using several technical and clinical databases using a variety of key words pertinent to maxillofacial prosthetic rehabilitation and resource-limited areas. In addition, interviews were conducted with researchers, clinicians and prosthetists that had direct experience of volunteering or working in resource-limited countries.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic disease affecting the joints. Treatment can include immobilisation of the affected joint with a custom-fitting splint, which is typically fabricated by hand from low temperature thermoplastic, but the approach poses several limitations. This study focused on the evaluation, by finite element analysis, of additive manufacturing techniques for wrist splints in order to improve upon the typical splinting approach.

View Article and Find Full Text PDF

Background: In contact sports (eg, American football or rugby), injuries resulting from impacts are widespread. There have been several attempts to identify and collate, within a conceptual framework, factors influencing the likelihood of an injury. To effectively define an injury event it is necessary to systematically consider all potential causal factors but none of the previous approaches are complete in this respect.

View Article and Find Full Text PDF

Vascular vessels, including arteries, veins and capillaries, are being printed using additive manufacturing technologies, also known as 3D printing. This paper demonstrates that it is important to follow the vascular design by nature as close as possible when 3D printing artificial vascular branches. In previous work, the authors developed an algorithm of computational geometry for constructing smooth junctions for 3D printing.

View Article and Find Full Text PDF

Previous sports impact reconstructions have highlighted the inadequacies in current measures to evaluate the effectiveness of personal protective equipment (PPE) and emphasised the need for improved impact surrogates that provide a more biofidelic representation of human impact response. The skin, muscle and subcutaneous adipose tissues were considered to constitute the structures primarily governing the mechanical behaviour of the human body segment. A preceding study by Payne et al.

View Article and Find Full Text PDF

Impact injuries are commonplace in sport and often lead to performance detriment and debilitation. Personal Protective Equipment (PPE) is prescribed as a mandatory requirement in most sports where these impacts are likely to occur, though the methods of governance and evaluation criteria often do not accurately represent sports specific injury scenarios. One of the key shortcomings of such safety test standards is the human surrogate to which the PPE is affixed; this typically embodies unrepresentative geometries, masses, stiffness and levels of constraint when compared to humans.

View Article and Find Full Text PDF

We review the use of additive manufacturing (AM) as a novel manufacturing technique for the production of milli-scale reactor systems. Five well-developed additive manufacturing techniques: stereolithography (SL), multi-jet modelling (MJM), selective laser melting (SLM), laser sintering (LS) and fused deposition modelling (FDM) were used to manufacture a number of miniaturised reactors which were tested using a range of organic and inorganic reactions.

View Article and Find Full Text PDF

Human surrogates are representations of living human structures employed to replicate "real-life" injurious scenarios in artificial environments. They are used primarily to evaluate personal protective equipment (PPE) or integrated safety systems (e.g.

View Article and Find Full Text PDF

The efficacy of computer-aided technologies in the design and manufacture of maxillofacial prostheses has not been fully proven. This paper presents research into the evaluation of direct and indirect additive manufacture of a maxillofacial prosthesis against conventional laboratory-based techniques. An implant/magnet-retained nasal prosthesis case from a UK maxillofacial unit was selected as a case study.

View Article and Find Full Text PDF

Additive manufacturing, covering processes frequently referred to as rapid prototyping and rapid manufacturing, provides new opportunities in the manufacture of highly complex and custom-fitting medical devices and products. Whilst many medical applications of AM have been explored and physical properties of the resulting parts have been studied, the characterisation of AM materials in computed tomography has not been explored. The aim of this study was to determine the CT number of commonly used AM materials.

View Article and Find Full Text PDF