Introduction: In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints.
View Article and Find Full Text PDFIntroduction: Coronavirus disease 2019 (COVID-19) has widely varying clinical severity. Currently, no single marker or panel of markers is considered standard of care for prediction of COVID-19 disease progression. The goal of this study is to gain mechanistic insights at the molecular level and to discover predictive biomarkers of severity of infection and outcomes among COVID-19 patients.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used in the Comprehensive in vitro Proarrhythmia Assay (CiPA). The notable difference of the electrophysiological (EP) responses of hiPSC-CMs in serum and serum-free media (SFM) is puzzling and may impact regulatory decision-making on the cardiac safety of candidate drugs in inducing QT prolongation and torsade de pointes (TdP). In this study, we compared the EP responses of hiPSC-CMs to 10 CiPA compounds and moxifloxacin in serum and SFM; explained the potential reason behind the different EP responses-abiotic compound loss to plastic tubes/plates of hydrophobic compounds prepared in SFM; and investigated the impact of compound preparation methods on drug bioavailability in exposure media, which affects the TdP risk prediction of drugs tested in serum-containing and SFM.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2021
Introduction: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics.
Objectives: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics.
Methods: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories.