Communities near transportation sources can be impacted by higher concentrations of particulate matter (PM) and other air pollutants. Few studies have reported on air quality in complex urban environments with multiple transportation sources. To better understand these environments, the Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) was conducted in three neighborhoods in Southeast Kansas City, Kansas.
View Article and Find Full Text PDFThe role of school location in children's air pollution exposure and ability to actively commute is a growing policy issue. Well-documented health impacts associated with near-roadway exposures have led school districts to consider school sites in cleaner air quality environments requiring school bus transportation. We analyze children's traffic-related air pollution exposure across an average Detroit school day to assess whether the benefits of reduced air pollution exposure at cleaner school sites are eroded by the need to transport students by bus or private vehicle.
View Article and Find Full Text PDFMany countries have adopted portable emissions measurement system (PEMS) testing in their latest regulations to measure real-world vehicular emissions. However, its fleetwide implementation is severely limited by the high equipment costs and lengthy setup procedures, posing a need to develop more cost-effective, efficient emission measurement methods, such as mobile chasing tests. We conducted conjoint PEMS-chasing experiments for twelve heavy-duty diesel vehicles (HDDTs) to evaluate the accuracy of mobile measurement results.
View Article and Find Full Text PDFCommunities located in near-road environments face adverse health effects due to elevated exposures to traffic-related air pollution (TRAP). While the use of a combination of solid structures (i.e.
View Article and Find Full Text PDFWith increasing population, rapid urbanization, and increased migration to cities, the local impacts of increasing transportation and industrial-related air pollution are of growing concern worldwide. Elevated air pollution concentrations near these types of sources have been linked to adverse health effects including acute and chronic respiratory and cardiovascular diseases. Mobile monitoring has proven to be a useful technique to characterize spatial variability of air pollution in urban areas and pollution concentration gradients from specific sources.
View Article and Find Full Text PDFUrban For Urban Green
January 2020
Trees in urban areas have a significant impact on air quality and other environmental issues. Trees can affect the concentration of air pollutants that we breathe in by directly removing pollutants or avoiding emissions and secondary pollutant formation in the atmosphere. In addition, trees have other benefits including increasing property value, intercepting storm water runoff and saving energy needed for cooling of buildings in hot seasons.
View Article and Find Full Text PDFSpatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding of the relative contributions of emissions sources impacting the community.
View Article and Find Full Text PDFEmissions from transportation sources can impact local air quality and contribute to adverse health effects. The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS), conducted over a 1-year period, researched emissions source characterization in the Argentine, Turner, and Armourdale, Kansas (KS) neighborhoods and the broader southeast Kansas City, KS area. This area is characterized as a near-source environment with impacts from large railyard operations, major roadways, and commercial and industrial facilities.
View Article and Find Full Text PDFGreen infrastructure (GI) in urban areas may be adopted as a passive control system to reduce air pollutant concentrations. However, current dispersion models offer limited modelling options to evaluate its impact on ambient pollutant concentrations. The scope of this review revolves around the following question: how can GI be considered in readily available dispersion models to allow evaluation of its impacts on pollutant concentrations and health risk assessment? We examined the published literature on the parameterisation of deposition velocities and datasets for both particulate matter and gaseous pollutants that are required for deposition schemes.
View Article and Find Full Text PDFRoadside vegetation has been shown to impact downwind, near-road air quality, with some studies identifying reductions in air pollution concentrations and others indicating increases in pollutant levels when vegetation is present. These widely contradictory results have resulted in confusion regarding the capability of vegetative barriers to mitigate near-road air pollution, which numerous studies have associated with significant adverse human health effects. Roadside vegetation studies have investigated the impact of many different types and conditions of vegetation barriers and urban forests, including preserved, existing vegetation stands usually consisting of mixtures of trees and shrubs or plantings of individual trees.
View Article and Find Full Text PDFNitrogen dioxide (NO) not only is linked to adverse effects on the respiratory system but also contributes to the formation of ground-level ozone (O) and fine particulate matter (PM). Our curbside monitoring data analysis in Detroit, MI, and Atlanta, GA, strongly suggests that a large fraction of NO is produced during the "tailpipe-to-road" stage. To substantiate this finding, we designed and carried out a field campaign to measure the same exhaust plumes at the tailpipe-level by a portable emissions measurement system (PEMS) and at the on-road level by an electric vehicle-based mobile platform.
View Article and Find Full Text PDFElevated air pollution levels adjacent to major highways are an ongoing topic of public health concern worldwide. Black carbon (BC), a component of particulate matter (PM) emitted by diesel and gasoline vehicles, was measured continuously via a filter-based light absorption technique over ~ 16 months at four different stations positioned on a perpendicular trajectory to a major highway in Las Vegas, NV. During downwind conditions (winds from the west), BC at 20 m from the highway was 32 and 60% higher than concentrations at 100 and 300 m from the roadway, respectively.
View Article and Find Full Text PDFAtmos Pollut Res
November 2017
Mobile monitoring is a strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA's Geospatial Measurement of Air Pollution (GMAP) vehicle - an all-electric vehicle is outfitted with a number of measurement devices to record real-time concentrations of particulate matter and gaseous pollutants - was used to map air pollution levels near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and concentrations of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm-20 μm), carbon monoxide, and nitrogen dioxide.
View Article and Find Full Text PDFThe present study examines the effects of fuel [an ultralow sulfur diesel (ULSD) versus a 20% v/v soy-based biodiesel-80% v/v petroleum blend (B20)], temperature, load, vehicle, driving cycle, and active regeneration technology on gas- and particle-phase carbon emissions from light and medium heavy-duty diesel vehicles (L/MHDDV). The study is performed using chassis dynamometer facilities that support low-temperature operation (-6.7 °C versus 21.
View Article and Find Full Text PDFTransp Res D Transp Environ
May 2017
As public health concerns have increased due to the rising number of studies linking adverse health effects with exposures to traffic-related pollution near large roadways, interest in methods to mitigate these exposures have also increased. Several studies have investigated the use of roadside features in reducing near-road air pollution concentrations since this method is often one of the few short-term options available to reduce near-road air pollution. Since roadside vegetation has other potential benefits, the impact of this feature has been of particular interest.
View Article and Find Full Text PDFTraffic-related air pollution is a persistent concern especially in urban areas where populations live in close proximity to roadways. Innovative solutions are needed to minimize human exposure and the installation of vegetative barriers shows potential as a method to reduce near-road concentrations. This study investigates the impact of an existing stand of deciduous and evergreen trees on near-road total particle number (PNC) and black carbon (BC) concentrations across three seasons.
View Article and Find Full Text PDFTraffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that determine the mitigation caused by solid barriers, we still have questions about how vegetative barriers affect dispersion.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2016
In February 2015, the United States Environmental Protection Agency (EPA) sponsored a workshop in Research Triangle Park, NC, USA to review the current state of the science one missions, air quality impacts, and health effects associated with exposures to ultrafine particles[1].[..
View Article and Find Full Text PDFNumerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant transport via particle deposition to leaves and altering the dispersion of emission plumes, which in turn would modify the exposure of near-roadway communities to traffic-related UFPs. In this study, both stationary (equipped with a Scanning Mobility Particle Sizer, SMPS) and mobile (equipped with Fast Mobility Particle Sizer, FMPS) measurements were conducted to investigate the effects of vegetation barriers on downwind UFP (particle diameters ranging from 14 to 102 nm) concentrations at two sites in North Carolina, USA.
View Article and Find Full Text PDFWith increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; however, the characteristics of these barriers needed to ensure pollution reductions are not well understood. Designing vegetation barriers to mitigate near-road air pollution requires a mechanistic understanding of how barrier configurations affect the transport of traffic-related air pollutants.
View Article and Find Full Text PDFEmissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively.
View Article and Find Full Text PDFUnlabelled: Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT).
View Article and Find Full Text PDF