Publications by authors named "Richard B Robinson"

This article reviews work over the past three decades that is related to the contribution of the pacemaker current, I, to basal and autonomically regulated spontaneous rate in the sinoatrial node. It also addresses how the actions of the pacemaker current relate to those of Ca homeostasis with respect to basal and autonomically regulated rhythm. In this regard, it explores the relative contributions of Ca-sensitive and Ca-insensitive isoforms of adenylyl cyclase to sinoatrial node automaticity.

View Article and Find Full Text PDF

In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage.

View Article and Find Full Text PDF

The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes.

View Article and Find Full Text PDF

Purkinje fibers/cells continue to be a focus of arrhythmologists. Here we review several new ideas that have emerged in the literature and fold them into important new points. These points include the following: some proteins in Purkinje cells are specific to Purkinjes; pacemaker function in Purkinje may be similar to that of the sinus node cell; sink-source concerns about tracts/sheets of Purkinje fibers; role of Ito in arrhythmias; and genetic lesions in Purkinjes and their high impact on cardiac rhythm.

View Article and Find Full Text PDF

Since its introduction into clinical practice, electronic pacing has saved many lives. Despite continuous improvements, electronic pacemakers have important shortcomings, which stimulated the development of biological alternatives. Biological pacemakers generate the cardiac impulse using genes or cells to treat bradycardias.

View Article and Find Full Text PDF

Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is a common arrhythmia with significant morbidities and only partially adequate therapeutic options. AF is associated with atrial remodeling processes, including changes in the expression and function of ion channels and signaling pathways. TWIK protein-related acid-sensitive K+ channel (TASK)-1, a two-pore domain K+ channel, has been shown to contribute to action potential repolarization as well as to the maintenance of resting membrane potential in isolated myocytes, and TASK-1 inhibition has been associated with the induction of perioperative AF.

View Article and Find Full Text PDF

Efforts to use gene therapy to create a biological pacemaker as an adjunct or replacement of electronic pacemakers have been ongoing for about 15 years. For the past decade, most of these efforts have focused on the hyperpolarization-activated cyclic nucleotide gated-(HCN) gene family of channels alone or in combination with other genes. The HCN gene family is the molecular correlate of the cardiac pacemaker current, If.

View Article and Find Full Text PDF

Aims: Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN.

View Article and Find Full Text PDF

Background: Sinus node (SN) dysfunction is observed in some long-QT syndrome (LQTS) patients, but has not been studied as a function of LQTS genotype. LQTS6 involves mutations in the hERG β-subunit MiRP1, which also interacts with hyperpolarization-activated, cyclic nucleotide gated (HCN) channels-the molecular correlate of SN pacemaker current (If ). An LQTS registry search identified a 55-year male with M54T MiRP1 mutation, history of sinus bradycardia (39-56 bpm), and prolonged QTc.

View Article and Find Full Text PDF

Objectives: This study sought to test the hypothesis that hyperpolarization-activated cyclic nucleotide-gated (HCN)-based biological pacing might be improved significantly by hyperpolarizing the action potential (AP) threshold via coexpression of the skeletal muscle sodium channel 1 (SkM1).

Background: Gene-based biological pacemakers display effective in vivo pacemaker function. However, approaches used to date have failed to manifest optimal pacemaker properties, defined as basal beating rates of 60 to 90 beats/min, a brisk autonomic response achieving maximal rates of 130 to 160 beats/min, and low to absent electronic backup pacing.

View Article and Find Full Text PDF

Peri-operative atrial fibrillation (peri-op AF) is a common complication following thoracic surgery. This arrhythmia is thought to be triggered by an inflammatory response and can be reproduced in various animal models. Previous work has shown that the lipid inflammatory mediator, platelet-activating factor (PAF), synthesized by activated neutrophils, can induce atrial and ventricular arrhythmias as well as repolarization abnormalities in isolated ventricular myocytes.

View Article and Find Full Text PDF

Background: Biological pacing performed solely via HCN2 gene transfer in vivo results in relatively slow idioventricular rates and only moderate autonomic responsiveness. We induced biological pacing using the Ca(2+)-stimulated adenylyl cyclase AC1 gene expressed alone or in combination with HCN2 and compared outcomes with those with single-gene HCN2 transfer.

Methods And Results: We implanted adenoviral HCN2, AC1, or HCN2/AC1 constructs into the left bundle branches of atrioventricular-blocked dogs.

View Article and Find Full Text PDF

Background: In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na(+) channel (SkM1) to epicardial border zones normalizes conduction and reduces induction of ventricular tachycardia/ventricular fibrillation. We now studied the impact of canine mesenchymal stem cells (cMSCs) in delivering SkM1.

View Article and Find Full Text PDF

The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue.

View Article and Find Full Text PDF

Previous observations show that β-adrenergic modulation of pacemaker current (I(f)) in sinoatrial node (SAN) cells is impaired by disruption of normal Ca(2+)-homeostasis with ryanodine or BAPTA. Recently, the presence of Ca(2+)-activated adenylyl cyclase (AC) 1 was reported in SAN, and was proposed as a possible mechanism of Ca(2+)-dependence of β-adrenergic modulation. However, direct evidence that pacemaker (HCN) channels can be regulated by Ca(2+)-activated AC and that such regulation introduces Ca(2+) dependence, is lacking.

View Article and Find Full Text PDF

Aims: Reentry accounts for most life-threatening arrhythmias, complicating myocardial infarction, and therapies that consistently prevent reentry from occurring are lacking. In this study, we compare antiarrhythmic effects of gene transfer of green fluorescent protein (GFP; sham), the skeletal muscle sodium channel (SkM1), the liver-specific connexin (Cx32), and SkM1/Cx32 in the subacute canine infarct.

Methods And Results: Immediately after ligation of the left anterior descending artery, viral constructs were implanted in the epicardial border zone (EBZ).

View Article and Find Full Text PDF

The field of biological pacing is entering its second decade of active investigation. The inception of this area of study was serendipitous, deriving largely from observations made by several teams of investigators, whose common interest was to understand the mechanisms governing cardiac impulse initiation. Research directions taken have fallen under the broad headings of gene therapy and cell therapy, and biomaterials research has also begun to enter the field.

View Article and Find Full Text PDF

Biological pacing has been proposed as a physiologic counterpart to electronic pacing, and the sinoatrial node (SAN) is the general standard for biological pacemakers. We tested the expression of SAN pacemaker cell activity when implanted autologously in the right ventricle (RV). We induced complete heart block and implanted electronic pacemakers in the RV of adult mongrel dogs.

View Article and Find Full Text PDF

Increasing connexin43 (Cx43) gap junctional conductance as a means to improve cardiac conduction has been proposed as a novel antiarrhythmic modality. Yet, transmission of molecules via gap junctions may be associated with increased infarct size. To determine whether maintaining open gap junction channels impacts on infarct size and induction of ventricular tachycardia (VT) following coronary occlusion, we expressed the pH- and voltage-independent connexin isoform connexin32 (Cx32) in ventricle and confirmed Cx32 expression.

View Article and Find Full Text PDF

Aims: acute myocardial ischaemia induces a decrease in resting membrane potential [which leads to reduction of action potential (AP) V(max)] and intracellular acidification (which closes gap junctions). Both contribute to conduction slowing. We hypothesized that ventricular expression of the skeletal muscle Na(+) channel, Nav1.

View Article and Find Full Text PDF