Publications by authors named "Richard B Marchase"

There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) has been implicated as a key mediator of store-dependent and store-independent Ca(2+) entry pathways and maintenance of ER structure. STIM1 is present in embryonic, neonatal, and adult cardiomyocytes and has been strongly implicated in hypertrophic signaling; however, the physiological role of STIM1 in the adult heart remains unknown. We, therefore, developed a novel cardiomyocyte-restricted STIM1 knockout ((cr)STIM1-KO) mouse.

View Article and Find Full Text PDF

Serine phosphorylation of AMPA receptor (AMPAR) subunits GluA1 and GluA2 modulates AMPAR trafficking during long-term changes in strength of hippocampal excitatory transmission required for normal learning and memory. The post-translational addition and removal of O-linked β-N-acetylglucosamine (O-GlcNAc) also occurs on serine residues. This, together with the high expression of the enzymes O-GlcNAc transferase (OGT) and β-N-acetylglucosamindase (O-GlcNAcase), suggests a potential role for O-GlcNAcylation in modifying synaptic efficacy and cognition.

View Article and Find Full Text PDF

Store-operated Ca²⁺ entry (SOCE) is critical for Ca²⁺ signaling in nonexcitable cells; however, its role in the regulation of cardiomyocyte Ca²⁺ homeostasis has only recently been investigated. The increased understanding of the role of stromal interaction molecule 1 (STIM1) in regulating SOCE combined with recent studies demonstrating the presence of STIM1 in cardiomyocytes provides support that this pathway co-exists in the heart with the more widely recognized Ca²⁺ handling pathways associated with excitation-contraction coupling. There is now substantial evidence that STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo, and there is growing support for the contribution of SOCE to Ca²⁺ overload associated with ischemia/reperfusion injury.

View Article and Find Full Text PDF

Store-operated calcium entry (SOCE) is a major Ca(2+) signaling pathway responsible for regulating numerous transcriptional events. In cardiomyocytes SOCE has been shown to play an important role in regulating hypertrophic signaling pathways, including nuclear translocation of NFAT. Acute activation of pathways leading to O-GlcNAc synthesis have been shown to impair SOCE-mediated transcription and in diabetes, where O-GlcNAc levels are chronically elevated, cardiac hypertrophic signaling is also impaired.

View Article and Find Full Text PDF

The posttranslational modification of nuclear and cytosolic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has been shown to play an important role in cellular response to stress. Although increases in O-GlcNAc levels have typically been thought to be substrate-driven, studies in several transformed cell lines reported that glucose deprivation increased O-GlcNAc levels by a number of different mechanisms. A major goal of this study therefore was to determine whether in primary cells, such as neonatal cardiomyocytes, glucose deprivation increases O-GlcNAc levels and if so by what mechanism.

View Article and Find Full Text PDF

The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of chronic disease processes. However, there is increasing evidence that O-GlcNAc levels are increased in response to stress and that acute augmentation of this response is cytoprotective, at least in the short term.

View Article and Find Full Text PDF

Objective: To evaluate the effects of O-linked beta-N-acetylglucosamine (O-GlcNAc) levels on survival, inflammation, and organ damage 24 hrs after trauma-hemorrhage. We have previously shown that increasing protein O-GlcNAc levels by different mechanisms reduced inflammatory responses and improved organ function 2 hrs after trauma-hemorrhage.

Design: Prospective, randomized, controlled study.

View Article and Find Full Text PDF

The modification of serine and threonine residues of nuclear and cytoplasmic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) has emerged as a highly dynamic post-translational modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of its adverse effects in mediating a range of chronic disease processes, including diabetes, cancer and neurodegenerative diseases. However, at the cellular level it has been shown that O-GlcNAc levels are increased in response to stress; augmentation of this response improved cell survival while attenuation decreased cell viability.

View Article and Find Full Text PDF

We have previously demonstrated that in a rat model of trauma-hemorrhage (T-H), glucosamine administration during resuscitation improved cardiac function, reduced circulating levels of inflammatory cytokines, and increased tissue levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. The mechanism(s) by which glucosamine mediated its protective effect were not determined; therefore, the goal of this study was to test the hypothesis that glucosamine treatment attenuated the activation of the nuclear factor-kappaB (NF-kappaB) signaling pathway in the heart via an increase in protein O-GlcNAc levels. Fasted male rats were subjected to T-H by bleeding to a mean arterial blood pressure of 40 mmHg for 90 min followed by resuscitation.

View Article and Find Full Text PDF

We have previously reported that glucosamine protected neonatal rat ventricular myocytes against ischemia-reperfusion (I/R) injury, and this was associated with an increase in protein O-linked-N-acetylglucosamine (O-GlcNAc) levels. However, the protective effect of glucosamine could be mediated via pathways other that O-GlcNAc formation; thus the initial goal of the present study was to determine whether increasing O-GlcNAc transferase (OGT) expression, which catalyzes the formation of O-GlcNAc, had a protective effect similar to that of glucosamine. To better understand the potential mechanism underlying O-GlcNAc-mediated cytoprotection, we examined whether increased O-GlcNAc levels altered the expression and translocation of members of the Bcl-2 protein family.

View Article and Find Full Text PDF

Changes in the levels of O-linked N-acetyl-glucosamine (O-GlcNAc) on nucleocytoplasmic protein have been associated with a number of age-related diseases such as Alzheimer's and diabetes; however, there is relatively little information regarding the impact of age on tissue O-GlcNAc levels. Therefore, the goal of this study was to determine whether senescence was associated with alterations in O-GlcNAc in heart, aorta, brain and skeletal muscle and if so whether there were also changes in the expression of enzymes critical in regulating O-GlcNAc levels, namely, O-GlcNAc transferase (OGT), O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase (GFAT). Tissues were harvested from 5- and 24-month old Brown-Norway rats; UDP-GlcNAc, a precursor of O-GlcNAc was assessed by HPLC, O-GlcNAc and OGT levels were assessed by immunoblot analysis and GFAT1/2, OGT, O-GlcNAcase mRNA levels were determined by RT-PCR.

View Article and Find Full Text PDF

An increase in cytosolic Ca2+ via a capacitative calcium entry (CCE)-mediated pathway, attributed to members of the transient receptor potential (TRP) superfamily, TRPC1 and TRPC3, has been reported to play an important role in regulating cardiomyocyte hypertrophy. Increased cytosolic Ca2+ also plays a critical role in mediating cell death in response to ischemia-reperfusion (I/R). Therefore, we tested the hypothesis that overexpression of TRPC3 in cardiomyocytes will increase sensitivity to I/R injury.

View Article and Find Full Text PDF

An early and rapid response to severe injury or trauma is the development of hyperglycemia, which has long been thought to be an essential survival response by providing fuel for vital organ systems and facilitating mobilization of interstitial fluid reserves by increasing osmolarity. However, glucose can also be metabolized via the hexosamine biosynthesis pathway (HBP), leading to the synthesis of uridine diphosphate N-acetyl-glucosamine(UDP-GlcNAc). UDP-GlcNAc is a substrate for the addition, via an O-linkage, of a single N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins (O-glycosylation, O-GlcNAc).

View Article and Find Full Text PDF

We have previously shown that preischemic treatment with glucosamine improved cardiac functional recovery following ischemia-reperfusion, and this was mediated, at least in part, via enhanced flux through the hexosamine biosynthesis pathway and subsequently elevated O-linked N-acetylglucosamine (O-GlcNAc) protein levels. However, preischemic treatment is typically impractical in a clinical setting; therefore, the goal of this study was to investigate whether increasing protein O-GlcNAc levels only during reperfusion also improved recovery. Isolated perfused rat hearts were subjected to 20 min of global, no-flow ischemia followed by 60 min of reperfusion.

View Article and Find Full Text PDF

We have previously shown that glucosamine administration resulted in higher cardiac output and improved tissue perfusion after trauma-hemorrhage with resuscitation in rats, which was associated with the increased levels of protein O-linked-N-acetylglucosamine (O-GlcNAc). The purpose of the study was to evaluate the effect of glucosamine on the survival, without resuscitation, in rats. Adult male rats underwent midline laparotomy and 55% of total blood volume was withdrawn for 25 min under isoflurane anesthesia.

View Article and Find Full Text PDF

We have previously shown that administration of glucosamine after trauma-hemorrhage (TH) improved cardiac output and organ perfusion, and this was associated with increased levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins in the heart and brain. An alternative means of increasing O-GlcNAc levels is by inhibition of O-linked N-acetylglucosaminidase, which catalyzes the removal of N-acetylglucosamine from proteins, with O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc). The goal of this study, therefore, was to determine whether PUGNAc administration after TH also improves recovery of organ perfusion and function.

View Article and Find Full Text PDF

We have shown that, in the perfused heart, glucosamine improved functional recovery following ischemia and that this appeared to be mediated via an increase in O-linked N-acetylglucosamine (O-GlcNAc) levels on nucleocytoplasmic proteins. Several kinase pathways, specifically Akt and the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2, which have been implicated in ischemic cardioprotection, have also been reported to be modified in response to increased O-GlcNAc levels. Therefore, the goals of this study were to determine the effect of ischemia on O-GlcNAc levels and to evaluate whether the cardioprotection resulting from glucosamine treatment could be attributed to changes in ERK1/2, Akt, and p38 phosphorylation.

View Article and Find Full Text PDF

Increased levels of O-linked attachment of N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins are implicated in the development of diabetic cardiomyopathy and are regulated by O-GlcNAc transferase (OGT) expression and its substrate UDP-GlcNAc. Therefore, the goal of this study was to determine whether the development of diabetes in the Zucker diabetic fatty (ZDF) rat, a model of Type 2 diabetes, results in defects in cardiomyocyte mechanical function and, if so, whether this is associated with increased levels of O-GlcNAc and increased OGT expression. Six-week-old ZDF rats were hyperinsulinemic but normoglycemic, and there were no differences in cardiomyocyte mechanical function, UDP-GlcNAc, O-GlcNAc, or OGT compared with age-matched lean control rats.

View Article and Find Full Text PDF

It has been shown that glutamine protects the heart from ischemia/reperfusion (I/R) injury; however, the mechanisms underlying this protection have not been identified. Glutamine:fructose-6-phosphate amidotransferase (GFAT) regulates the entry of glucose into the hexosamine biosynthesis pathway (HBP), and activation of this pathway has been shown to be cardioprotective. Glutamine is required for metabolism of glucose via GFAT; therefore, the goal of this study was to determine whether glutamine cardioprotection could be attributed to increased flux through the HBP and elevated levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins.

View Article and Find Full Text PDF

There is growing recognition that the O-linked attachment of N-acetyl-glucosamine (O-GlcNAc) on serine and threonine residues of nuclear and cytoplasmic proteins is a highly dynamic post-translational modification that plays a key role in signal transduction pathways. Numerous proteins have been identified as targets of O-GlcNAc modifications including kinases, phosphatases, transcription factors, metabolic enzymes, chaperons, and cytoskeletal proteins. Modulation of O-GlcNAc levels has been shown to modify DNA binding, enzyme activity, protein-protein interactions, the half-life of proteins, and subcellular localization.

View Article and Find Full Text PDF

Increased levels of protein O-linked N-acetylglucosamine (O-GlcNAc) have been shown to increase cell survival following stress. Therefore, the goal of this study was to determine whether in isolated neonatal rat ventricular myocytes (NRVMs) an increase in protein O-GlcNAcylation resulted in improved survival and viability following ischemia-reperfusion (I/R). NRVMs were exposed to 4 h of ischemia and 16 h of reperfusion, and cell viability, necrosis, apoptosis, and O-GlcNAc levels were assessed.

View Article and Find Full Text PDF

Stress-induced hyperglycemia is necessary for maximal rates of survival after severe hemorrhage; however, the responsible mechanisms are not clear. One consequence of hyperglycemia is an increase in hexosamine biosynthesis, which leads to increases in levels of O-linked attachment of N-acetyl-glucosamine (O-GlcNAc) on nuclear and cytoplasmic proteins. This modification has been shown to lead to improved survival of isolated cells after stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoeg64khgh8174njqalt7qspv71lqvj3m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once