Publications by authors named "Richard B Lanctot"

Migratory shorebirds are one of the fastest declining groups of North American avifauna. Yet, relatively little is known about how these species select habitat during migration. We explored the habitat selection of Buff-breasted Sandpipers (Calidris subruficollis) during spring and fall migration through the Texas Coastal Plain, a major stopover region for this species.

View Article and Find Full Text PDF

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey.

View Article and Find Full Text PDF

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota.

View Article and Find Full Text PDF

Mercury (Hg) pollution remains a concern to Arctic ecosystems, due to long-range transport from southern industrial regions and melting permafrost and glaciers. The objective of this study was to identify intrinsic, extrinsic, and temporal factors influencing Hg concentrations in Arctic-breeding shorebirds and highlight regions and species at greatest risk of Hg exposure. We analyzed 1094 blood and 1384 feather samples from 12 shorebird species breeding at nine sites across the North American Arctic during 2012 and 2013.

View Article and Find Full Text PDF

Tracking biodiversity shifts is central to understanding past, present, and future global changes. Recent advances in bioacoustics and the low cost of high-quality automatic recorders are revolutionizing studies in biogeography and community and behavioral ecology with a robust assessment of phenology, species occurrence, and individual activity. This large volume of acoustic recordings has recently generated a plethora of datasets that can now be handled automatically, mostly via big data methods such as deep learning.

View Article and Find Full Text PDF

Determining the dynamics of where and when individuals occur is necessary to understand population declines and identify critical areas for populations of conservation concern. However, there are few examples where a spatially and temporally explicit model has been used to evaluate the migratory dynamics of a bird population across its entire annual cycle. We used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-Australasian Flyway (EAAF) to construct a migratory network describing annual subspecies-specific migration patterns in space and time.

View Article and Find Full Text PDF

Climate change in the Arctic is leading to earlier summers, creating a phenological mismatch between the hatching of insectivorous birds and the availability of their invertebrate prey. While phenological mismatch would presumably lower the survival of chicks, climate change is also leading to longer, warmer summers that may increase the annual productivity of birds by allowing adults to lay nests over a longer period of time, replace more nests that fail, and provide physiological relief to chicks (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • * The Arctic Animal Movement Archive (AAMA) is a new resource that compiles over 200 animal tracking studies from 1991 to now, making it easier to access and analyze this data.
  • * Through AAMA, researchers are studying how climate change affects animal behaviors, including eagle migration timing, caribou reproduction patterns, and movement rates of terrestrial mammals.
View Article and Find Full Text PDF

Tundra-breeding birds face diverse conservation challenges, from accelerated rates of Arctic climate change to threats associated with highly migratory life histories. Here we summarise the status and trends of Arctic terrestrial birds (88 species, 228 subspecies or distinct flyway populations) across guilds/regions, derived from published sources, raw data or, in rare cases, expert opinion. We report long-term trends in vital rates (survival, reproduction) for the handful of species and regions for which these are available.

View Article and Find Full Text PDF

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role.

View Article and Find Full Text PDF
Article Synopsis
  • The original article contained errors in the symbols of figure 1A due to typesetting issues.
  • A correction has been issued to provide the accurate version of the figure.
  • This correction aims to clarify any confusion caused by the incorrect symbols in the published work.
View Article and Find Full Text PDF

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active.

View Article and Find Full Text PDF

The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well-documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers.

View Article and Find Full Text PDF

Kubelka (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic.

View Article and Find Full Text PDF

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify.

View Article and Find Full Text PDF

Phenological advancement allows individuals to adapt to climate change by timing life-history events to the availability of key resources so that individual fitness is maximized. However, different trophic levels may respond to changes in their environment at different rates, potentially leading to a phenological mismatch. This may be especially apparent in the highly seasonal arctic environment that is experiencing the effects of climate change more so than any other region.

View Article and Find Full Text PDF

Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota.

View Article and Find Full Text PDF

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring).

View Article and Find Full Text PDF

Millions of birds migrate to and from the Arctic each year, but rapid climate change in the High North could strongly affect where species are able to breed, disrupting migratory connections globally. We modelled the climatically suitable breeding conditions of 24 Arctic specialist shorebirds and projected them to 2070 and to the mid-Holocene climatic optimum, the world's last major warming event ~6000 years ago. We show that climatically suitable breeding conditions could shift, contract and decline over the next 70 years, with 66-83% of species losing the majority of currently suitable area.

View Article and Find Full Text PDF

Sex-role reversal, in which males care for offspring, can occur when mate competition is stronger between females than males. Secondary sex traits and mate attracting displays in sex-role-reversed species are usually more pronounced in females than in males. The red phalarope (Phalaropus fulicarius) is a textbook example of a sex-role-reversed species.

View Article and Find Full Text PDF

Background: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.

View Article and Find Full Text PDF

Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines.

View Article and Find Full Text PDF

Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases.

View Article and Find Full Text PDF

We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years.

View Article and Find Full Text PDF

Background: The global spread of the highly pathogenic avian influenza H5N1 virus has stimulated interest in a better understanding of the mechanisms of H5N1 dispersal, including the potential role of migratory birds as carriers. Although wild birds have been found dead during H5N1 outbreaks, evidence suggests that others have survived natural infections, and recent studies have shown several species of ducks capable of surviving experimental inoculations of H5N1 and shedding virus. To investigate the possibility of migratory birds as a means of H5N1 dispersal into North America, we monitored for the virus in a surveillance program based on the risk that wild birds may carry the virus from Asia.

View Article and Find Full Text PDF