The etiological spectrum of ultra-rare developmental disorders remains to be fully defined. Chromatin regulatory mechanisms maintain cellular identity and function, where misregulation may lead to developmental defects. Here, we report pathogenic variations in MSL3, which encodes a member of the chromatin-associated male-specific lethal (MSL) complex responsible for bulk histone H4 lysine 16 acetylation (H4K16ac) in flies and mammals.
View Article and Find Full Text PDFBackground: Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS.
View Article and Find Full Text PDFConstitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.
View Article and Find Full Text PDFPreviously, we localized the defective gene for the urofacial syndrome (UFS) to a region on chromosome 10q24 by homozygosity mapping. We now report evidence that Heparanse 2 (HPSE2) is the culprit gene for the syndrome. Mutations with a loss of function in the Heparanase 2 (HPSE2) gene were identified in all UFS patients originating from Colombia, the United States, and France.
View Article and Find Full Text PDFA case is reported with right-sided abnormalities involving the brain, eyelid, eye, face and chest. The features described are similar to those found in conditions including focal dermal hypoplasia, microphthalmia with linear skin defects, oculocerebrocutaneous syndrome and terminal osseous dysplasia and pigmentary defects. However, none of these conditions, fully explains the collection of abnormalities found in this patient.
View Article and Find Full Text PDFCraniofrontonasal syndrome (CFNS) is an X-linked disorder that exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis, and additional minor malformations, but males are usually mildly affected with hypertelorism only. Despite this, males appear underrepresented in CFNS pedigrees, with carrier males encountered infrequently compared with affected females. To investigate these unusual genetic features of CFNS, we exploited the recent discovery of causative mutations in the EFNB1 gene, which encodes ephrin-B1, to survey the molecular alterations in 59 families (39 newly investigated and 20 published elsewhere).
View Article and Find Full Text PDF