In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course.
View Article and Find Full Text PDFThe processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals.
View Article and Find Full Text PDFNeurons receive information through their synaptic inputs, but the functional significance of how those inputs are mapped on to a cell's dendrites remains unclear. We studied this question in a grasshopper visual neuron that tracks approaching objects and triggers escape behavior before an impending collision. In response to black approaching objects, the neuron receives OFF excitatory inputs that form a retinotopic map of the visual field onto compartmentalized, distal dendrites.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
March 2020
Voltage-gated sodium (NaV) channels, encoded by the gene para, play a critical role in the rapid processing and propagation of visual information related to collision avoidance behaviors. We investigated their localization by immunostaining the optic lobes and central brain of the grasshopper Schistocerca americana and the vinegar fly Drosophila melanogaster with an antibody that recognizes the channel peptide domain responsible for fast inactivation gating. NaV channels were detected at high density at all stages of development.
View Article and Find Full Text PDFHow neurons filter and integrate their complex patterns of synaptic inputs is central to their role in neural information processing. Synaptic filtering and integration are shaped by the frequency-dependent neuronal membrane impedance. Using single and dual dendritic recordings in vivo, pharmacology, and computational modeling, we characterized the membrane impedance of a collision detection neuron in the grasshopper .
View Article and Find Full Text PDFThe locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe.
View Article and Find Full Text PDFAll animals must detect impending collisions to escape and reliably discriminate them from nonthreatening stimuli, thus preventing false alarms. Therefore, it is no surprise that animals have evolved highly selective and sensitive neurons dedicated to such tasks. We examined a well-studied collision-detection neuron in the grasshopper ( Schistocerca americana) using in vivo electrophysiology, pharmacology, and computational modeling.
View Article and Find Full Text PDFVisual neurons that track objects on a collision course are often finely tuned to their target stimuli because this is critical for survival. The presynaptic neural networks converging on these neurons and their role in tuning them remain poorly understood. We took advantage of well-known characteristics of one such neuron in the grasshopper visual system to investigate the properties of its presynaptic input network.
View Article and Find Full Text PDFFeedforward inhibition is ubiquitous as a motif in the organization of neuronal circuits. During sensory information processing, it is traditionally thought to sharpen the responses and temporal tuning of feedforward excitation onto principal neurons. As it often exhibits complex time-varying activation properties, feedforward inhibition could also convey information used by single neurons to implement dendritic computations on sensory stimulus variables.
View Article and Find Full Text PDFCollision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels.
View Article and Find Full Text PDFVisually-guided escape behaviors are critical for survival. New research reveals how neurons selectively coding for local motion directions can be assembled into collision detecting ones using a simple recipe.
View Article and Find Full Text PDFA new study uses a combination of physiological and optogenetic techniques to identify visual neurons in fruit flies that detect approaching objects, and whose activation is integral in escaping an oncoming threat.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
December 2008
Despite decades of work on the neuromuscular physiology of crustacean leg muscles, little is known about how physiological differences between these muscles relate to their behavioral usage. We studied a sideways walking shore crab, Carcinus maenas, and a forward walking spider crab, Libinia emarginata, as part of our work to understand the neural control of locomotion. The two species differed significantly in facilitation at neuromuscular junctions for every muscle studied.
View Article and Find Full Text PDF