With the development of economy and society, the consumption of fossil energy is gradually increasing. In order to solve the current energy dilemma, Natural gas hydrate (NGH) is considered as an ideal alternative energy. At the same time, solid fluidization exploitation is an ideal method.
View Article and Find Full Text PDFMedically derived (131)I (t1/2 = 8.04 d) is discharged from water pollution control plants (WPCPs) in sewage effluent. Iodine's nutrient-like behavior and the source-specificity of (131)I make this radionuclide a potentially valuable tracer in wastewater nitrogen studies.
View Article and Find Full Text PDFDissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel.
View Article and Find Full Text PDF2,4,6-Trinitrotoluene (TNT) metabolism was compared across salinity transects in Kahana Bay, a small tropical estuary on Oahu, HI. In surface water, TNT incorporation rates (range: 3-121 μg C L(-1) d(-1)) were often 1-2 orders of magnitude higher than mineralization rates suggesting that it may serve as organic nitrogen for coastal microbial assemblages. These rates were often an order of magnitude more rapid than those for RDX and two orders more than HMX.
View Article and Find Full Text PDFProkaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses.
View Article and Find Full Text PDFThe nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO(2)); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO(2) was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 μg C kg(-1) d(-1)).
View Article and Find Full Text PDFSediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge.
View Article and Find Full Text PDFBacterial diversity in eight sediment cores from the mid-Chilean margin was studied using length heterogeneity (LH)-PCR, and described in relation to in situ geochemical conditions. DNA from the sulfate-methane transition (SMT) of three cores [one containing methane gas; two proximal to a gas hydrate mound (GHM)] was cloned and sequenced. Clones related to uncultured relatives of Desulfosarcina variabilis were found in all clone libraries and dominated one.
View Article and Find Full Text PDFExpression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 microm) to assess N-deplete versus N-replete metabolic states, respectively.
View Article and Find Full Text PDFNatural gas hydrates are a potential source of energy and may play a role in climate change and geological hazards. Most natural gas hydrate appears to be in the form of 'structure I', with methane as the trapped guest molecule, although 'structure II' hydrate has also been identified, with guest molecules such as isobutane and propane, as well as lighter hydrocarbons. A third hydrate structure, 'structure H', which is capable of trapping larger guest molecules, has been produced in the laboratory, but it has not been confirmed that it occurs in the natural environment.
View Article and Find Full Text PDFCompound Specific Isotope Analysis (CSIA) has been shown to be a useful tool for assessing biodegradation, volatilization, and hydrocarbon degradation. One major advantage of this technique is that it does not rely on determining absolute or relative abundances of individual components of a hydrocarbon mixture which may change considerably during weathering processes. However, attempts to use isotopic values for linking sources to spilled or otherwise unknown hydrocarbons have been hampered by the lack of a robust and rigorous statistical method for testing the hypothesis that two samples are or are not the same.
View Article and Find Full Text PDFPolycylic aromatic hydrocarbons (PAHs) are common contaminants in industrial watersheds. Their origin, transport and fate are important to scientists, environmental managers and citizens. The Philadelphia Naval Reserve Basin (RB) is a small semi-enclosed embayment near the confluence of the Schuylkill and Delaware Rivers in Pennsylvania (USA).
View Article and Find Full Text PDF