Disordered fiber networks provide structural support to a wide range of important materials, and the combination of spatial and dynamic complexity may produce large inhomogeneities in mechanical properties, an effect that is largely unexplored experimentally. In this work, we introduce Boundary Stress Microscopy to quantify the non-uniform surface stresses in sheared collagen gels. We find local stresses exceeding average stresses by an order of magnitude, with variations over length scales much larger than the network mesh size.
View Article and Find Full Text PDFWe discuss the design and operation of a confocal rheometer, formed by integrating an Anton Paar MCR301 stress-controlled rheometer with a Leica SP5 laser scanning confocal microscope. Combining two commercial instruments results in a system which is straightforward to assemble that preserves the performance of each component with virtually no impact on the precision of either device. The instruments are configured so that the microscope can acquire time-resolved, three-dimensional volumes of a sample whose bulk viscoelastic properties are being measured simultaneously.
View Article and Find Full Text PDFNew insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments.
View Article and Find Full Text PDFWe investigate the system size-dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness.
View Article and Find Full Text PDFWe develop an extension of fluorescence correlation spectroscopy (FCS) using a spinning disk confocal microscope. This approach can spatially map diffusion coefficients or flow velocities at up to approximately 10(5) independent locations simultaneously. Commercially available cameras with frame rates of 1000 Hz allow FCS measurements of systems with diffusion coefficients D~10(-7) cm(2)/s or smaller.
View Article and Find Full Text PDF