In the course of mitochondrial diseases standard care mostly focuses on treatment of symptoms, while therapeutic approaches aimed at restoring mitochondrial function are currently still in development. The transfer of healthy or modified mitochondria into host cells would open up the possibilities of new cell therapies. Therefore, in this study, a novel method of mitochondrial transfer is proposed by anti-TOM22 magnetic bead-labeled mitochondria with the assistance of a magnetic plate.
View Article and Find Full Text PDFTechnol Health Care
December 2012
Background: The success of a tissue engineered construct is greatly influenced by the choice of scaffold material. Decellularized esophageal matrix is a promising material for esophageal tissue engineering. The aim of this study was to develop a decellularized ovine esophageal mucosa and to investigate the effect of decellularization on the appearance of the resulting tissue.
View Article and Find Full Text PDFBackground: Esophagus tissue engineering holds promises for esophageal replacement after severe caustic injuries. The aim of this study was to determine whether viable esophageal epithelial cells could be isolated from an esophagus exposed to varying concentrations of alkali with regard to number, viability, and morphology during in vitro culture.
Methods: Ovine esophagi were exposed to phosphate-buffered saline 2.
Background: Tissue engineering and regenerative medicine is envisaged as the future option for esophageal replacement; however, engineering of a functional esophagus is impeded by the limited understanding of the anatomical complexity of this dynamic muscular organ. The aim of this study was to characterize the function of native esophageal tissue and determine differences in functional response to stimulation between anatomical sites.
Materials And Methods: The in-vitro response of guinea pig esophageal preparations, from various anatomical sites, to muscle agonists was investigated.