Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions.
View Article and Find Full Text PDFThere is a pressing need to control the occurrences of nosocomial infections due to their detrimental effects on patient well-being and the rising treatment costs. To prevent the contact transmission of such infections via health-critical surfaces, a prophylactic surface system that consists of an interdigitated array of oppositely charged silver electrodes with polymer separations and utilizes oligodynamic iontophoresis has been recently developed. This paper presents a systematic study that empirically characterizes the effects of the surface system parameters on its antibacterial efficacy, and validates the system's effectiveness.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2014
Nanomaterials play a significant role in biomedical research and applications because of their unique biological, mechanical, and electrical properties. In recent years, they have been utilized to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopedic residual hardware devices (e.g.
View Article and Find Full Text PDFThis paper reports the fabrication methodology and characterization results for an electrically activated silver-polymer-based antibacterial surface with primary applications in preventing indirect contact transmission of infections. The surface consists of a micro-scale grating pattern of alternate silver electrodes and SU-8 partitions with a minimum feature size of 20 µm, and activated by an external voltage. In this study, prototype coupons (15 mm × 15 mm) of the antibacterial surface were fabricated on silicon substrates using two sets of lithographies, and analyzed for their physical characteristics using microscopy and surface profilometry.
View Article and Find Full Text PDFThe increased use of Residual Hardware Devices (RHDs) in medicine combined with antimicrobial resistant-bacteria make it critical to reduce the number of RHD associated osteomyelitic infections. This paper proposes a surface treatment based on ionic emission to create an antibiotic environment that can significantly reduce RHD associated infections. The Kirby-Bauer agar gel diffusion technique was adopted to examine the antimicrobial efficacy of eight metals and their ionic forms against seven microbes commonly associated with osteomyelitis.
View Article and Find Full Text PDF