Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes.
View Article and Find Full Text PDFSmall monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments.
View Article and Find Full Text PDFVesicular transport shuttles cargo among intracellular compartments. Several stages of vesicular transport are mediated by the small GTPase Arf, which is controlled in a cycle of GTP binding and hydrolysis by Arf guanine-nucleotide exchange factors and Arf GTPase-activating proteins (ArfGAPs), respectively. In budding yeast the Age2 + Gcs1 ArfGAP pair facilitates post-Golgi transport.
View Article and Find Full Text PDFAsf1 is a conserved histone H3/H4 chaperone that can assemble and disassemble nucleosomes and promote histone acetylation. Set2 is an H3 K36 methyltransferase. The functions of these proteins intersect in the context of transcription elongation by RNA polymerase II: both contribute to the establishment of repressive chromatin structures that inhibit spurious intragenic transcription.
View Article and Find Full Text PDFTranscription by RNA polymerase II is impeded by the nucleosomal organization of DNA; these negative effects are modulated at several stages of nucleosomal DNA transcription by FACT, a heterodimeric transcription factor. At promoters, FACT facilitates the binding of TATA-binding factor, while during transcription elongation FACT mediates the necessary destabilization of nucleosomes and subsequent restoration of nucleosome structure in the wake of the transcription elongation complex. Altered FACT activity can impair the fidelity of transcription initiation and affect transcription patterns.
View Article and Find Full Text PDFThe ArfGAP Glo3 is required for coat protein I vesicle generation in the Golgi-endoplasmic reticulum (ER) shuttle. The best-understood role of Glo3 is the stimulation of the GTPase activity of Arf1. In this study, we characterized functional domains of the ArfGAP Glo3 and identified an interaction interface for coatomer, SNAREs and cargo in the central region of Glo3 (BoCCS region).
View Article and Find Full Text PDFGcs1 is an Arf GTPase-activating protein (Arf-GAP) that mediates Golgi-ER and post-Golgi vesicle transport in yeast. Here we show that the Snc1,2 v-SNAREs, which mediate endocytosis and exocytosis, interact physically and genetically with Gcs1. Moreover, Gcs1 and the Snc v-SNAREs colocalize to subcellular structures that correspond to the trans-Golgi and endosomal compartments.
View Article and Find Full Text PDFThe budding yeast Saccharomyces cerevisiae contains a family of Arf (ADP-ribosylation factor) GTPase activating protein (GAP) proteins with the Gcs1 + Age2 ArfGAP pair providing essential overlapping function for the movement of transport vesicles from the trans-Golgi network. We have generated a temperature-sensitive but stable version of the Gcs1 protein that is impaired only for trans-Golgi transport and find that deleterious effects of this enfeebled Gcs1-4 mutant protein are relieved by increased gene dosage of the gcs1-4 mutant gene itself or by the SFH2 gene (also called CSR1), encoding a phosphatidylinositol transfer protein (PITP). This effect was not seen for the SEC14 gene, encoding the founding member of the yeast PITP protein family, even though the Gcs1 and Age2 ArfGAPs are known to be downstream effectors of Sec14-mediated activity for trans-Golgi transport.
View Article and Find Full Text PDFThe abundant nuclear complex termed FACT affects several DNA transactions in a chromatin context, including transcription, replication, and repair. Earlier studies of yeast FACT, which indicated the apparent dispensability of conserved sequences at the N terminus of the FACT subunit Cdc68/Spt16, prompted genetic and biochemical studies reported here that suggest the domain organization for Spt16 and the other FACT subunit Pob3, the yeast homolog of the metazoan SSRP1 protein. Our findings suggest that each FACT subunit is a multidomain protein, and that FACT integrity depends on Pob3 interactions with the Spt16 Mid domain.
View Article and Find Full Text PDFBiochem Cell Biol
August 2004
The chromatin configuration of DNA inhibits access by enzymes such as RNA polymerase II. This inhibition is alleviated by FACT, a conserved transcription elongation factor that has been found to reconfigure nucleosomes to allow transit along the DNA by RNA polymerase II, thus facilitating transcription. FACT also reorganizes nucleosomes after the passage of RNA polymerase II, as indicated by the effects of certain FACT mutations.
View Article and Find Full Text PDFThe small GTPase Arf and coatomer (COPI) are required for the generation of retrograde transport vesicles. Arf activity is regulated by guanine exchange factors (ArfGEF) and GTPase-activating proteins (ArfGAPs). The ArfGAPs Gcs1 and Glo3 provide essential overlapping function for retrograde vesicular transport from the Golgi to the endoplasmic reticulum.
View Article and Find Full Text PDFThe cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health.
View Article and Find Full Text PDFYeast phosphatidylinositol transfer protein (Sec14p) coordinates lipid metabolism with protein-trafficking events. This essential Sec14p requirement for Golgi function is bypassed by mutations in any one of seven genes that control phosphatidylcholine or phosphoinositide metabolism. In addition to these "bypass Sec14p" mutations, Sec14p-independent Golgi function requires phospholipase D activity.
View Article and Find Full Text PDF