Age-related hearing loss is a multifactorial condition with effects of aging and environmental exposures that contribute to cochlear pathologies. Metabolic hearing loss involves declines in the endocochlear potential, which broadly reduce cochlear amplification of low-level sounds. Sensory hearing loss involves damage to outer hair cells that may eliminate amplification, especially for high-frequency sounds.
View Article and Find Full Text PDFAuditory function declines with age, as evidenced by communication difficulties in challenging listening environments for older adults. Declining auditory function may arise, in part, from an age-related loss and/or inactivity of low-spontaneous-rate (SR) auditory nerve (AN) fibers, a subgroup of neurons important for suprathreshold processing. Compared to high-SR fibers, low-SR fibers take longer to recover from prior stimulation.
View Article and Find Full Text PDFThere are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
October 2013
Age-related hearing loss (presbyacusis) has a complex etiology. Results from animal models detailing the effects of specific cochlear injuries on audiometric profiles may be used to understand the mechanisms underlying hearing loss in older humans and predict cochlear pathologies associated with certain audiometric configurations ("audiometric phenotypes"). Patterns of hearing loss associated with cochlear pathology in animal models were used to define schematic boundaries of human audiograms.
View Article and Find Full Text PDFWith the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear.
View Article and Find Full Text PDFGerbils aged in quiet show a decline of the endocochlear potential (EP) and elevated auditory nerve compound action potential (CAP) thresholds. However, establishing a direct relationship between an age-related reduction in the EP and changes in the activities of primary auditory neurons is difficult owing to the complexity of age-related histological changes in the cochlea. To address this issue, we developed a young gerbil model of "metabolic" presbyacusis that uses an osmotic pump to deliver furosemide into the round window niche for 7 days, resulting in a chronically reduced EP.
View Article and Find Full Text PDFApplication of ouabain to the round window membrane of the gerbil selectively induces the death of most spiral ganglion neurons and thus provides an excellent model for investigating the survival and differentiation of embryonic stem cells (ESCs) introduced into the inner ear. In this study, mouse ESCs were pretreated with a neural-induction protocol and transplanted into Rosenthal's canal (RC), perilymph, or endolymph of Mongolian gerbils either 1-3 days (early post-injury transplant group) or 7 days or longer (late post-injury transplant group) after ouabain injury. Overall, ESC survival in RC and perilymphatic spaces was significantly greater in the early post-injury microenvironment as compared to the later post-injury condition.
View Article and Find Full Text PDFHypothesis: Mitomycin C is ototoxic when applied topically to the structures of the middle ear.
Background: Mitomycin C is a topically applied medication widely used in a variety of surgical procedures to prevent excessive scar tissue formation. Its safety for use during otologic procedures has not been fully evaluated.
Degeneration of the spiral ganglion neurons (SGNs) of the auditory nerve occurs with age and in response to acoustic injury. Histopathological observations suggest that the neural degeneration often begins with an excitotoxic process affecting the afferent dendrites under the inner hair cells (IHCs), however, little is known about the sequence of cellular or molecular events mediating this excitotoxicity. Nuclear factor kappaB (NFkappaB) is a transcription factor involved in regulating inflammatory responses and apoptosis in many cell types.
View Article and Find Full Text PDFBone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP(+) BM cells were also transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns).
View Article and Find Full Text PDFExposure of mice to total body irradiation induces nuclear factor kappaB (NFkappaB) activation in a tissue-specific manner. In addition to the spleen, lymph nodes, and bone marrow, the tissues that exhibit NFkappaB activation now include the newly identified site of the intestinal epithelial cells. NFkappaB activated by total body irradiation mainly consists of NFkappaB p50/RelA heterodimers, and genetically targeted disruption of the NFkappaB p50 gene in mice significantly decreased the activation.
View Article and Find Full Text PDFAuditory characteristics of metabolic or strial presbycusis were investigated using an animal model in which young adult Mongolian gerbils ( Meriones unguiculates) were implanted with an osmotic pump supplying furosemide continuously to the round window. This model causes chronic lowering of the endocochlear potential (EP) and results in auditory responses very similar to those seen in quiet-aged gerbils (Schmiedt et al., J.
View Article and Find Full Text PDFHearing thresholds in elderly humans without a history of noise exposure commonly show a profile of a flat loss at low frequencies coupled with a loss that increases with frequency above approximately 2 kHz. This profile and the relatively robust distortion product otoacoustic emissions that are found in elderly subjects challenge the common belief that age-related hearing loss (presbyacusis) is based primarily on sensory-cell disorders. Here, we examine a model of presbyacusis wherein the endocochlear potential (EP) is reduced by means of furosemide applied chronically to one cochlea of a young gerbil.
View Article and Find Full Text PDFObjective: To gain insight into molecular and cellular mechanisms regulating cochlear potassium (K+) recycling, including the possible effects of mutations in the gene, which encodes the gap junction protein connexin 26. Intercellular K+ flux was manipulated in vivo by infusion of the gap junction uncoupler proadifen (SKF-525A) into perilymph. Functional and structural alterations induced by gap junction blockade were assessed by electrophysiological and morphologic analysis.
View Article and Find Full Text PDFAge-dependent hearing loss has been well documented in gerbils exceeding 2 years of age using physiological methods (e.g. [Mills et al.
View Article and Find Full Text PDF