Publications by authors named "Richard A Mowery"

The exchange of subunits between homodimeric mutant Cu, Zn superoxide dismutase (SOD1) and wild-type (WT) SOD1 is suspected to be a crucial step in the onset and progression of amyotrophic lateral sclerosis (ALS). The rate, mechanism, and ΔG of heterodimerization (ΔGHet) all remain undetermined, due to analytical challenges in measuring heterodimerization. This study used capillary zone electrophoresis to measure rates of heterodimerization and ΔGHet for seven ALS-variant apo-SOD1 proteins that are clinically diverse, producing mean survival times between 2 and 12 years (postdiagnosis).

View Article and Find Full Text PDF

To determine if trinitrotoluene (TNT) forms nonextractable residues in mussels (Mytilus galloprovincialis) and fish (Cyprinodon variegatus) and to measure the relative degree of accumulation as compared to extractable TNT and its major metabolites, organisms were exposed to water fortified with (14)C-TNT. After 24 h, nonextractable residues made up 75% (mussel) and 83% (fish) while TNT accounted for 2% of total radioactivity. Depuration half-lives for extractable TNT, aminodinitrotoluenes (ADNTs) and diaminonitrotoluenes (DANTs) were fast initially (<0.

View Article and Find Full Text PDF

In this study, protein charge ladders and mass spectrometry were used to quantify how metal cations in the Hofmeister series (Na(+), K(+), Li(+), Mg(2+), and Ca(2+)) permute the effects of lysine acetylation on the rate of amide H/D exchange in a representative protein (myoglobin, Mb). The successive acetylation of up to 18 Lys-ε-NH3(+) groups in Mb caused a linear decrease in its global rate of amide H/D exchange (as measured by mass spectrometry), despite also decreasing the thermostability of Mb by >10 °C. The ability of a metal cation to screen kinetic electrostatic effects during H/D exchange-and to abolish the protective effect of acetylation against H/D exchange-was found to depend on the position of the cation in the Hofmeister series.

View Article and Find Full Text PDF

The net charge of a folded protein is hypothesized to influence myriad biochemical processes (e.g., protein misfolding, electron transfer, molecular recognition); however, few tools exist for measuring net charge and this elusive property remains undetermined--at any pH--for nearly all proteins.

View Article and Find Full Text PDF

This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15)N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly.

View Article and Find Full Text PDF

The amino acid substitution or post-translational modification of a cytosolic protein can cause unpredictable changes to its electrophoretic mobility during SDS-PAGE. This type of "gel shifting" has perplexed biochemists and biologists for decades. We identify a mechanism for "gel shifting" that predominates among a set of ALS (amyotrophic lateral sclerosis) mutant hSOD1 (superoxide dismutase) proteins, post-translationally modified hSOD1 proteins, and homologous SOD1 proteins from different organisms.

View Article and Find Full Text PDF

Quantitative liquid-chromatography techniques used to characterize carbohydrates present in biomass samples can suffer from long analysis times, limited analyte resolution, poor stability, or a combination of these factors. The current manuscript details a novel procedure enabling resolution of glucose, xylose, arabinose, galactose, mannose, fructose, and sucrose via isocratic elution in less than 5 min. Equivalent conditions also enable analysis of cellobiose and maltose with a minimal increase in chromatographic run time (ca.

View Article and Find Full Text PDF

A variety of potentially inhibitory degradation products are produced during pretreatment of lignocellulosic biomass. Qualitative and quantitative interrogation of pretreatment hydrolysates is paramount to identifying potential correlations between pretreatment chemistries and microbial inhibition in downstream bioconversion processes. In the present study, corn stover, poplar, and pine feedstocks were pretreated under eight different chemical conditions, which are representative of leading pretreatment processes.

View Article and Find Full Text PDF

Any valuation of a potential feedstock for bioprocessing is inherently dependent upon detailed knowledge of its chemical composition. Accepted analytical procedures for compositional analysis of biomass water-soluble extracts currently enable near-quantitative mass closure on a dry weight basis. Techniques developed in conjunction with a previous analytical assessment of corn stover have been applied to assess the composition of water-soluble materials in four representative switchgrass samples.

View Article and Find Full Text PDF

Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis.

View Article and Find Full Text PDF

A variety of degradation products are produced upon pretreatment of lignocellulosic biomass with dilute acid. To date, the complexity of these samples has significantly limited the scope of efforts to perform summative analyses of degradation products. Qualitative and quantitative interrogation of hydrolysates is also paramount to identifying potential correlations between pretreatment chemistry and microbial inhibition in downstream bioconversion processes.

View Article and Find Full Text PDF

A variety of degradation products are produced upon dilute acid pretreatment of lignocellulosic biomass. Within this larger construct, organic acids, phenols and aromatic aldehydes represent important compound classes to investigate due to increasing evidence of their inhibitory effect on fermentative microorganisms. An analytical extraction procedure is presented, enabling isolation of potential analytes away from alternative products in biomass hydrolysates.

View Article and Find Full Text PDF

Certain substituted naphthalimides have been shown to produce, on photochemical activation, mechanically viable bonds between a variety of tissue surfaces. It is believed that these compounds act as photochemically activated oxidants, catalyzing the formation of reactive intermediates in the extracellular matrices of approximated tissue surfaces. The condensation of these intermediates results in the formation of crosslinks between the intimate surfaces.

View Article and Find Full Text PDF