Publications by authors named "Richard A Meiss"

The objective of the present study is to investigate the peak forces for a tracheal smooth muscle tissue subjected to an applied longitudinal vibration following isotonic shortening. A non-linear finite element analysis was carried out to simulate the vibratory response under experimental conditions that corresponds to forced length oscillations at 33 Hz for 1 second. The stiffness change and hysteresis estimated from the experimental data was used in the analysis.

View Article and Find Full Text PDF

The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including the notion that the muscle possesses a unique optimal length that correlates to maximal force generation, are likely to be incorrect. To facilitate accurate and efficient communication among scientists interested in the function of airway smooth muscle, a revised and collectively accepted nomenclature describing the adaptive and dynamic nature of the length-force relationship will be invaluable.

View Article and Find Full Text PDF

Contraction of smooth muscle tissue involves interactions between active and passive structures within the cells and in the extracellular matrix. This study focused on a defined mechanical behavior (shortening-dependent stiffness) of canine tracheal smooth muscle tissues to evaluate active and passive contributions to tissue behavior. Two approaches were used.

View Article and Find Full Text PDF

Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment.

View Article and Find Full Text PDF

We have observed striking differences in the mechanical properties of airway smooth muscle preparations among different species. In this study, we provide a novel analysis on the influence of tissue elastance on smooth muscle shortening using previously published data from our laboratory. We have found that isolated human airways exhibit substantial passive tension in contrast to airways from the dog and pig, which exhibit little passive tension (<5% of maximal active force versus approximately 60% for human bronchi).

View Article and Find Full Text PDF