Unlabelled: The Supreme Court's decision in highlights the need for tools enabling nuanced and precise analysis of gene patents at the global level.
Supplementary Information: The online version of this article (doi:10.1038/nbt.
Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations.
View Article and Find Full Text PDFDespite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context.
View Article and Find Full Text PDFTwo genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [(14)C]phenyl-1-thio-beta-d-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the E. coli genome, and their expression is induced by a variety of beta-d-glucuronides.
View Article and Find Full Text PDFAgrobacterium is widely considered to be the only bacterial genus capable of transferring genes to plants. When suitably modified, Agrobacterium has become the most effective vector for gene transfer in plant biotechnology. However, the complexity of the patent landscape has created both real and perceived obstacles to the effective use of this technology for agricultural improvements by many public and private organizations worldwide.
View Article and Find Full Text PDFLateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases.
View Article and Find Full Text PDF