Publications by authors named "Richard A J Janssen"

In early systemic sclerosis (Scleroderma, SSc), the vasculature is impaired. Although the exact etiology of endothelial cell damage in SSc remains unclear, it is hypothesized that endothelial to mesenchymal transition (EndoMT) plays a key role. To perform physiologically relevant angiogenic studies, we set out to develop an angiogenesis-on-a-chip platform that is suitable for assessing disease parameters that are relevant to SSc and other vasculopathies.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role in the regulation of this response as they sample gut commensals. In healthy individuals DCs actively contribute to tolerance upon recognition of these resident bacteria, whereas in individuals with IBD, DCs will initiate an inflammatory response.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a complex multi-factorial disease for which physiologically relevant in vitro models are lacking. Existing models are often a compromise between biological relevance and scalability. Here, we integrated intestinal epithelial cells (IEC) derived from human intestinal organoids with monocyte-derived macrophages, in a gut-on-a-chip platform to model the human intestine and key aspects of IBD.

View Article and Find Full Text PDF

A common bottleneck in any drug development process is finding sufficiently accurate models that capture key aspects of disease development and progression. Conventional drug screening models often rely on simple 2D culture systems that fail to recapitulate the complexity of the organ situation. In this study, we show the application of a robust high throughput 3D gut-on-a-chip model for investigating hallmarks of inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Antimicrobial proteins and peptides (AMPs) are a central component of the antibacterial activity of airway epithelial cells. It has been proposed that a decrease in antibacterial lung defense contributes to an increased susceptibility to microbial infection in smokers and patients with chronic obstructive pulmonary disease (COPD). However, whether reduced AMP expression in the epithelium contributes to this lower defense is largely unknown.

View Article and Find Full Text PDF

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g.

View Article and Find Full Text PDF

Basal cells play a critical role in the response of the airway epithelium to injury and are recently recognized to also contribute to epithelial immunity. Antimicrobial proteins and peptides are essential effector molecules in this airway epithelial innate immunity. However, little is known about the specific role of basal cells in antimicrobial protein and peptide production and about the regulation of the ubiquitous antimicrobial protein RNase 7.

View Article and Find Full Text PDF
Article Synopsis
  • The second messenger cAMP boosts insulin secretion from pancreatic β-cells, but its specific targets are not well-defined.
  • Researchers created cAMP analogues that selectively activate Epac2, showing significantly higher potency than cAMP itself.
  • One designed agonist, S-220, successfully increases insulin secretion in human pancreatic cells, suggesting a potential new strategy for diabetes treatment.
View Article and Find Full Text PDF

Pathogenic mechanisms involved in fibrosis of various organs share many common features. Myofibroblasts are thought to play a major role in fibrosis through excessive deposition of extracellular matrix during wound healing processes. Myofibroblasts are observed in fibrotic lesions, and whereas these derive from the hepatic stellate cells in liver, in lung they appear to originate from fibroblasts.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAM) are a major supportive component within neoplasms and are characterized by a plethora of functions that facilitate tumor outgrowth. Mechanisms of macrophage attraction and differentiation to a tumor-promoting phenotype, defined among others by distinct cytokine patterns such as pronounced interleukin (IL-10) production, are ill-defined. We aimed to identify signaling pathways that contribute to the generation of TAM-like macrophages using an adenoviral RNAi-based approach.

View Article and Find Full Text PDF

Basic research in pattern formation is concerned with the generation of phenotypes and tissues. It can therefore lead to new tools for medical research. These include phenotypic screening assays, applications in tissue engineering, as well as general advances in biomedical knowledge.

View Article and Find Full Text PDF

Dendritic cell-specific transcript (DC-SCRIPT) is a putative DC zinc (Zn) finger-type transcription factor described recently in humans. Here, we illustrate that DC-SCRIPT is highly conserved in evolution and report the initial characterization of the murine ortholog of DC-SCRIPT, which is also preferentially expressed in DC as shown by real-time quantitative polymerase chain reaction, and its distribution resembles that of its human counterpart. Studies undertaken in human embryonic kidney 293 cells depict its nuclear localization and reveal that the Zn finger domain of the protein is mainly responsible for nuclear import.

View Article and Find Full Text PDF

Dendritic cells (DC) compose a heterogeneous population of cells that hold a leading role in initiating and directing immune responses. Although their function in recognizing, capturing, and presenting Ags is well defined, the molecular mechanisms that control their differentiation and immune functions are still largely unknown. In this study, we report the isolation and characterization of DC-SCRIPT, a novel protein encoded by an 8-kb mRNA that is preferentially expressed in DC.

View Article and Find Full Text PDF

Recently, we described the molecular identification of dendritic cell-specific TrAnsMembrane protein (DC-STAMP), a multimembrane-spanning protein preferentially expressed by human DC (hDC). In this report, we describe the identification and expression profile of the murine homologue of DC-STAMP (mDC-STAMP) as well as the characterization of the DC-STAMP protein. The results demonstrate that mDC-STAMP is over 90% homologous to hDC-STAMP and is also preferentially expressed by DC in vitro and ex vivo.

View Article and Find Full Text PDF

The down-regulation of the high-molecular-weight isoforms of tropomyosin (TM) is considered to be an essential event in cellular transformation. In ras-transformed fibroblasts, the suppression of TM is dependent on the activity of the Raf-1 kinase; however, the requirement for other downstream effectors of Ras, such as MEK and ERK, is less clear. In this study, we have utilized the mitogen-activated protein kinase scaffolding protein Kinase Suppressor of Ras (KSR) to further investigate the regulation of TM and to clarify the importance of MEK/ERK signaling in this process.

View Article and Find Full Text PDF