We show that a gradient-index element designed from a blend of three materials allows a designer to specify independently the element's refractive index and its change in refractive index with respect to wavelength. We show further the effectiveness of this approach by comparing modeled chromatic performance of deflectors consisting of a single material, a binary blend of materials, and a ternary blend.
View Article and Find Full Text PDFUsing a transmission-spectrum-based method, the refractive index of a 50 μm thick sample of poly(methyl methacrylate) (PMMA) was measured as a function of wavelength. To mitigate the effects of nonplane-parallel surfaces, the sample was measured at 16 different locations. The technique resulted in the measurement of index at several thousand independent wavelengths from 0.
View Article and Find Full Text PDFFrom the expression for optical power of a radial first-order graded-index (GRIN) lens with curved surfaces, we derive an expression for chromatic aberration. Our expressions for optical power and chromatic aberration are valid under the paraxial approximation. By applying a series of further simplifying assumptions, namely a thin lens and thin GRIN, we derive a set of equations with which one can design an achromatic GRIN lens.
View Article and Find Full Text PDFTransmission spectroscopy and a small number of refractometer index measurements are combined to provide refractive index measurements of transparent samples ~50 um thick at hundreds of wavelengths with absolute accuracies <1 x 10(-4). Key to the technique is the use of independent index measurements to circumvent the need for an independent thickness measurement of the sample. The method was demonstrated on glass samples where fits to Cauchy curves had RMS accuracies <3 x 10(-5) from 415 to 1610 nm.
View Article and Find Full Text PDFGradient refractive index (GRIN) materials are attractive candidates for improved optical design, especially in compact systems. For GRIN lenses cut from spherically symmetric GRIN material, we derive an analogue of the "lens maker's" equation. Using this equation, we predict and demonstrate via ray tracing that an achromatic singlet lens can be designed, where the chromatic properties of the GRIN counterbalance those of the lens shape.
View Article and Find Full Text PDFWe propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle. The counter-propagating optical trap measurement (COTM) system exploits the capability of optical traps to measure pico-Newton forces for microparticles' refractive index and size characterization. Different from the current best technique for microparticles' refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap technique works with any transparent fluid and enables single particle analysis without the use of biological markers.
View Article and Find Full Text PDFA counter-propagating optical trap measurement (COTM) system is proposed and analyzed based on the ray-optics model. In this system, refractive index and size of trapped objects can be estimated by using forward scattered light from the two-beam laser trap with resolution Delta n = 0.013 for the refractive index measurements and 3.
View Article and Find Full Text PDF