Am J Physiol Renal Physiol
February 2018
Gestational potassium retention, most of which occurs during late pregnancy, is essential for fetal development. The purpose of this study was to examine mechanisms underlying changes in potassium handling by the kidney and colon in pregnancy. We found that potassium intake and renal excretion increased in late pregnancy while fecal potassium excretion remained unchanged and that pregnant rats exhibited net potassium retention.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2011
Apical SK/ROMK and BK channels mediate baseline and flow-induced K secretion (FIKS), respectively, in the cortical collecting duct (CCD). BK channels are detected in acid-base transporting intercalated (IC) and Na-absorbing principal (PC) cells. Although the density of BK channels is greater in IC than PC, Na-K-ATPase activity in IC is considered inadequate to sustain high rates of urinary K secretion.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
June 2011
ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD).
View Article and Find Full Text PDFA functional collaboration between growth factor receptors such as platelet derived growth factor receptor (PDGFR) and integrins is required for effective signal transduction in response to soluble growth factors. However, the mechanisms of synergistic PDGFR/integrin signaling remain poorly understood. Our previous work showed that cell surface tissue transglutaminase (tTG) induces clustering of integrins and amplifies integrin signaling by acting as an integrin binding adhesion co-receptor for fibronectin.
View Article and Find Full Text PDFWe have discovered that the immunoreactivity of the fluorophore Alexa Fluor 488 survives glutaraldehyde and osmium tetroxide fixation and epoxy resin embedding and etching. We have developed new localization methods that for the first time take advantage of this property. The antigen is localized in cryosections using suitable primary antibody and an Alexa Fluor 488-conjugated secondary antibody.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2003
In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studies examine the subcellular location of NHERF-1 and NHERF-2 and their interactions with target proteins including NHE3, Npt2, and ezrin.
View Article and Find Full Text PDFSodium-hydrogen exchanger regulatory factor-1 and -2 (NHERF-1 and NHERF-2) are adaptor proteins that regulate renal electrolyte transport and interact with the platelet-derived growth factor receptors (PDGFR). The distribution of the NHERF proteins and PDGFR was studied in normal human kidneys and in renal transplant rejection using immunocytochemistry. In normal kidneys, NHERF-1 was detected in proximal tubules.
View Article and Find Full Text PDF