Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models.
View Article and Find Full Text PDFBacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism.
View Article and Find Full Text PDFCells of the social amoeba Dictyostelium discoideum migrate to a source of periodic traveling waves of chemoattractant as part of a self-organized aggregation process. An important part of this process is cellular memory, which enables cells to respond to the front of the wave and ignore the downward gradient in the back of the wave. During this aggregation, the background concentration of the chemoattractant gradually rises.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Chemotaxis, the guided motion of cells by chemical gradients, plays a crucial role in many biological processes. In the social amoeba , chemotaxis is critical for the formation of cell aggregates during starvation. The cells in these aggregates generate a pulse of the chemoattractant, cyclic adenosine 3',5'-monophosphate (cAMP), every 6 min to 10 min, resulting in surrounding cells moving toward the aggregate.
View Article and Find Full Text PDFCell-substrate adhesion of the social amoeba Dictyostelium discoideum, a model organism often used for the study of chemotaxis, is non-specific and does not involve focal adhesion complexes. Therefore, micropatterned substrates where adherent Dictyostelium cells are constrained to designated microscopic regions are difficult to make. Here we present a micropatterning technique for Dictyostelium cells that relies on coating the substrate with an ∼1μm thick layer of polyethylene glycol (PEG) gel.
View Article and Find Full Text PDFAdhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately.
View Article and Find Full Text PDFIt is well known that Escherichia coli achieves chemotaxis by modulating the bias of the flagellar motor. Recent experiments have shown that the bacteria vary their swimming speeds as well in presence of attractants. However, this increase in the swimming speed in response to the attractants has not been correlated with the increase in the flagellar motor speed.
View Article and Find Full Text PDFNegative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent.
View Article and Find Full Text PDFStudies on chemotaxis of Escherichia coli have shown that modulation of tumble frequency causes a net drift up the gradient of attractants. Recently, it has been demonstrated that the bacteria is also capable of varying its runs speed in uniform concentration of attractant. In this study, we investigate the role of swimming speed on the chemotactic migration of bacteria.
View Article and Find Full Text PDFOsmotic Shock is known to negatively affect growth rate along with an extended lag phase. The reduction in growth rate can be characterized as burden due to the osmotic stress. Studies have shown that production of unnecessary protein also burdens cellular growth.
View Article and Find Full Text PDFIt is well known that Escherichia coli executes chemotactic motion in response to chemical cues by modulating the flagellar motor bias alone. However, previous studies have reported the possibility of variation in run speed in the presence of attractants although it is unclear whether bacteria can deliberately modulate their swimming speeds in response to environmental cues or if the motor speeds are hardwired. By studying the detailed motion of cells in a uniform concentration of glucose and its non-metabolizable analogue, we show that changing concentrations may be accompanied by variation in the swimming speed.
View Article and Find Full Text PDF