Publications by authors named "Rich Woessner"

Article Synopsis
  • Many non-small-cell lung cancer (NSCLC) patients develop resistance to existing EGFR tyrosine kinase inhibitors (TKIs), particularly due to _C797S mutations that render osimertinib ineffective.
  • BLU-945 is a new orally available EGFR-TKI that effectively targets both activating and resistance mutations, including EGFR_C797S, showing significant potency while sparing healthy EGFR.
  • In preclinical and early clinical studies, BLU-945 demonstrated promising results, inhibiting tumor growth in resistant models and patients, suggesting it could be a viable treatment option for NSCLC patients who no longer respond to osimertinib.
View Article and Find Full Text PDF

While epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the treatment landscape for EGFR mutant (L858R and ex19del)-driven non-small-cell lung cancer (NSCLC), most patients will eventually develop resistance to TKIs. In the case of first- and second-generation TKIs, up to 60% of patients will develop an EGFR T790M mutation, while third-generation irreversible TKIs, like osimertinib, lead to C797S as the primary on-target resistance mutation. The development of reversible inhibitors of these resistance mutants is often hampered by poor selectivity against wild-type EGFR, resulting in potentially dose-limiting toxicities and a sub-optimal profile for use in combinations.

View Article and Find Full Text PDF

Purpose: There are several agents in early clinical trials targeting components of the adenosine pathway including A2AR and CD73. The identification of cancers with a significant adenosine drive is critical to understand the potential for these molecules. However, it is challenging to measure tumor adenosine levels at scale, thus novel, clinically tractable biomarkers are needed.

View Article and Find Full Text PDF

The synthesis and biological evaluation of non-oxime pyrazole based B-Raf inhibitors is reported. Several oxime replacements have been prepared and have shown excellent enzyme activity. Further optimization of fused pyrazole 2a led to compound 38, a selective and potent B-Raf inhibitor.

View Article and Find Full Text PDF

Herein we describe a novel pyrazole-based class of ATP competitive B-Raf inhibitors. These inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. A subset of these inhibitors has demonstrated the ability to inhibit downstream ERK phosphorylation in LOX tumors from mouse xenograft studies.

View Article and Find Full Text PDF

The role of MEK 1,2 in cancer tumorgenesis has been clearly demonstrated preclinically, and two selective inhibitors are currently undergoing clinical evaluation to determine their role in the human disease. We have discovered 4-(4-bromo-2-fluorophenylamino)-1-methylpyridin-2(1H)-ones as a new class of ATP noncompetitive MEK inhibitors. These inhibitors exhibit excellent cellular potency and good pharmacokinetic properties and have demonstrated the ability to inhibit ERK phosphorylation in HT-29 tumors from mouse xenograft studies.

View Article and Find Full Text PDF