Dietary flavonoids, including the citrus flavanone hesperetin, may have stimulatory effects on cytoprotective intracellular signalling pathways. In primary mouse cortical neurone cultures, but not SH-SY5Y human neuroblastoma cells or human primary dermal fibroblasts (Promocells), hesperetin (100-300nM, 15min) caused significant increases in the level of ERK1/2 phosphorylation, but did not increase CREB phosphorylation. Administration of hesperetin for 18h did not alter gene expression driven by the cyclic AMP response element (CRE), assessed using a luciferase reporter system, but 300nM hesperetin partially reversed staurosporine-induced cell death in primary neurones.
View Article and Find Full Text PDFThe cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser428. This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage.
View Article and Find Full Text PDFThere is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7-O-beta-d-glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9.
View Article and Find Full Text PDFEmerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation.
View Article and Find Full Text PDFThere is much interest in the bioactivity of in vivo flavonoid metabolites. We report for the first time the hierarchy of reactivity of flavonoid metabolites with peroxynitrite and characterise novel reaction products. O-Methylation of the B-ring catechol containing flavonoids epicatechin and quercetin, and O-glucuronidation of all flavonoids reduced their reactivity with peroxynitrite.
View Article and Find Full Text PDFThe cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells.
View Article and Find Full Text PDFUVA (320-380 nm) radiation generates an oxidative stress in cells and leads to an immediate release of potentially damaging labile iron pools in human skin cells. Treatment of cultured skin fibroblasts for several hours with physiologically relevant concentrations of either epicatechin (EC), a flavonoid plant constituent present in foods, or methylated epicatechin (3'-O-methyl epicatechin, MeOEC), its major human metabolite, prevents this iron release. The similarity of the effectiveness of EC and MeOEC argues against chelation as the mechanism of iron removal.
View Article and Find Full Text PDFFree Radic Biol Med
September 2006
The major urinary metabolite of nitrotyrosine is 3-nitro-4-hydroxyphenylacetic acid (3-Nitro-HPA). However, recent animal studies have shown that the majority of urinary 3-Nitro-HPA is derived from nitration of endogenous para-hydroxyphenylacetic acid (HPA), a metabolite of tyrosine. One potential site for the formation of 3-Nitro-HPA is the stomach, where nitrous acid is formed by the reaction of nitrite in saliva with gastric acid.
View Article and Find Full Text PDFResveratrol has been widely investigated for its potential health properties, although little is known about its metabolism in vivo. Here we investigated the distribution of metabolic products of [3H]trans-resveratrol, following gastric administration. At 2 h, plasma concentrations reached 1.
View Article and Find Full Text PDFRecent reports have demonstrated various cardiovascular and neurological benefits associated with the consumption of foods rich in anthocyanidins. However, information regarding absorption, metabolism, and especially, tissue distribution are only beginning to accumulate. In the present study, we investigated the occurrence and the kinetics of various circulating pelargonidin metabolites, and we aimed at providing initial information with regard to tissue distribution.
View Article and Find Full Text PDFStudies have suggested that diets rich in polyphenols such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine.
View Article and Find Full Text PDFThere is increasing interest in the ability of diets rich in polyphenols to modulate age-related diseases and promote healthy ageing. We have conducted a pilot experiment with eight tomato varieties to correlate the total antioxidant capacity of the tomato variants with the specific constituent flavonoids present. A strong correlation was observed with the flavonol rhamnoglucoside rutin but not with other flavonoids, such as naringenin chalcone, or hydroxycinnamates, such as chlorogenic, which are also present in the tomato.
View Article and Find Full Text PDFCitrus flavonoids have been investigated for their biological activity, with both anti-inflammatory and -carcinogenic effects being reported. However, little information is known on the bioavailability of these compounds in vivo. The objectives of this study were to determine the tissue distribution of naringenin after gastric gavage of [3H]-naringenin to rats.
View Article and Find Full Text PDFThe levels of zinc in the brain are directly affected by dietary zinc and deficiency has been associated with alcohol withdrawal seizures, excitotoxicity, impaired learning and memory and an accelerated rate of dysfunction in aged brain. Although zinc is essential for a healthy nervous system, high concentrations of zinc are neurotoxic, thus it is important to identify the most effective forms of zinc for treatment of conditions of the central nervous system. Accumulating evidence suggests that zinc-histidine complex (Zn(His)(2)) has greater biological potency and enhanced bioavailability compared with other zinc salts and also has antioxidant potential.
View Article and Find Full Text PDFThe functional characterization of hispidulin (4',5,7-trihydroxy-6-methoxyflavone), a potent benzodiazepine (BZD) receptor ligand, was initiated to determine its potential as a modulator of central nervous system activity. After chemical synthesis, hispidulin was investigated at recombinant GABA(A)/BZD receptors expressed by Xenopus laevis oocytes. Concentrations of 50 nm and higher stimulated the GABA-induced chloride currents at tested receptor subtypes (alpha(1-3,5,6)beta(2)gamma(2)S) indicating positive allosteric properties.
View Article and Find Full Text PDFMany studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades.
View Article and Find Full Text PDFFlavonoids have been proposed to act as beneficial agents in a multitude of disease states, including cancer, cardiovascular disease, and neurodegenerative disorders. The biological effect of these polyphenols and their in vivo circulating metabolites will ultimately depend on the extent to which they associate with cells, either by interactions at the membrane or more importantly their uptake. This review summarises the current knowledge on the cellular uptake of flavonoids and their metabolites with particular relevance to further intracellular metabolism and the generation of potential new bioactive forms.
View Article and Find Full Text PDFUnderstanding mechanisms associated with flavonoid neuroprotection is complicated by the lack of information on their ability to enter the CNS. This study examined naringenin and quercetin permeability across the blood-brain barrier (BBB), using in vitro (ECV304/C6 coculture) and in situ (rat) models. We report measurable permeabilities (P(app)) for both flavonoids across the in vitro BBB model, consistent with their lipophilicity.
View Article and Find Full Text PDFThe metabolism of chlorogenic acid, naringin, and rutin, representative members of three common families of dietary polyphenols, the hydroxycinnamates, the flavanones, and the flavonols, respectively, was studied in an in vitro mixed culture model of the human colonic microflora. Time- and concentration-dependent degradation of all three compounds was observed, which was associated with the following metabolic events after cleavage of the ester or glycosidic bond: reduction of the aliphatic double bond of the resulting hydroxycinnamate caffeic acid residue; dehydroxylation and ring fission of the heterocyclic C-ring of the resulting deglycosylated flavanone, naringenin, and of the deglycosylated flavonol, quercetin (which differed depending on the substitution). The metabolic events, their sequences, and major phenolic end products, as identified by GC-MS or LC-MS/MS, were elucidated from the structural characteristics of the investigated compounds.
View Article and Find Full Text PDFThe ultraviolet A component of sunlight causes both acute and chronic damage to human skin. In this study the potential of epicatechin, an abundant dietary flavanol, and 3'-O-methyl epicatechin, one of its major in vivo metabolites, to protect against UVA-induced damage was examined using cultured human skin fibroblasts as an in vitro model. The results obtained clearly show that both epicatechin and its metabolite protect these fibroblasts against UVA damage and cell death.
View Article and Find Full Text PDFThere is considerable interest in the biological properties of flavonoids in terms of their antioxidant and cytoprotective actions. The interaction of the flavanone hesperetin with human skin fibroblasts (FEK4) has revealed the potential for metabolism to hesperetin glucuronide and its subsequent extrusion. As a consequence of this observation, the effectiveness of hesperetin glucuronides, in comparison with that of the aglycone form, in protecting against UV-A radiation has been investigated.
View Article and Find Full Text PDFThe ability to reduce the peroxidase (myeloglobin/H2O2)-generated ABTS*+ [2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) radical cation] has been used to rank the antioxidant activity of various agents including dietary flavonoids and chalcones. Surprisingly, we found that in the presence of catalytic concentrations of the phenol B-ring containing flavonoids, apigenin, naringenin and the chalcone phloretin, the formation of the ABTS*+ was initially increased. The enhanced formation of the ABTS*+ was attributed to the peroxidase/H2O2 mediated generation of polyphenolic phenoxyl radicals that were able to co-oxidize ABTS.
View Article and Find Full Text PDFEpidemiological evidence has suggested that consumption of fruit and vegetables reduces the risk of both cancer and cardiovascular diseases, potentially through the biological actions of components such as vitamin C, vitamin E, flavonoids and carotenoids. Citrus species are extremely rich sources in vitamin C and flavanones, a class of compounds which belongs to the flavonoids family. A comparison of the phenolic compositions, the ascorbic acid contents and the antioxidant activities of fresh Sicilian orange juices from pigmented (Moro, Tarocco and Sanguinello) and non-pigmented (Ovale, Valencia and Navel) varieties of orange (Citrus sinensis L.
View Article and Find Full Text PDFMuch recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3.
View Article and Find Full Text PDF