Publications by authors named "Ricciotti E"

Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase -2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is linked to the use of NSAIDs, but it's unclear whether they lead more to heart failure with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF).
  • Research in mice showed that while COX-2 inhibition didn't affect cardiac function overall, aged female mice experienced signs of diastolic dysfunction and elevated BNP levels while maintaining preserved ejection fraction.
  • The findings suggest that COX-2 deletion specifically leads to HFpEF rather than HFrEF and indicates that calcium handling imbalances may affect heart relaxation in this context.
View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used medications for the management of chronic pain; however, they are associated with numerous gastrointestinal (GI) adverse events. Although many mechanisms have been suggested, NSAID-induced enteropathy has been thought to be primarily due to inhibition of both cyclooxygenases (COX) -1 and -2, which results in suppression of prostaglandin synthesis. Yet surprisingly, we found that concomitant postnatal deletion of and over 10 months failed to cause intestinal injury in mice unless they were treated with naproxen or its structural analog, phenylpropionic acid, which is not a COX inhibitor.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs.

View Article and Find Full Text PDF

Background: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice.

View Article and Find Full Text PDF

Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure.

View Article and Find Full Text PDF

Background: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU).

Methods: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity.

View Article and Find Full Text PDF

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A (sPLA ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD and PGI , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity.

View Article and Find Full Text PDF

Advances in genomic diagnostics hold promise for improved care of rare hematologic diseases. Here, we describe a novel targeted therapeutic approach for Ghosal hematodiaphyseal dysplasia, an autosomal recessive disease characterized by severe normocytic anemia and bone abnormalities due to loss-of-function mutations in thromboxane A synthase 1 (TBXAS1). TBXAS1 metabolizes prostaglandin H2 (PGH2), a cyclooxygenase (COX) product of arachidonic acid, into thromboxane A2.

View Article and Find Full Text PDF

Cigarette smoke exposure represents a well-established ovotoxic exogenous stress, but the molecular mechanisms underlying of this effect are still unclear. Cigarette smoke upregulates inflammatory genes in the female reproductive organs, therefore an abnormal inflammation response may contribute to the impairment of female fertility. In this study we investigated for the first time the effect of cigarette smoke exposure on NOS and COX expression and activity and on their transcription factors (CREB and NF-kB) in human GCs and on the release of NO and PGE in the FF in smoking and non-smoking patients undergoing IVF treatment.

View Article and Find Full Text PDF

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, providing safe in-person schooling has been a dynamic process balancing evolving community disease burden, scientific information, and local regulatory requirements with the mandate for education. Considerations include the health risks of SARS-CoV-2 infection and its post-acute sequelae, the impact of remote learning or periods of quarantine on education and well-being of children, and the contribution of schools to viral circulation in the community. The risk for infections that may occur within schools is related to the incidence of SARS-CoV-2 infections within the local community.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a wide spectrum of symptom severity, which is manifested at different phases of infection and demands different levels of care. Viral load, host innate-immune response to SARS-CoV-2, and comorbidities have a direct impact on the clinical outcomes of COVID-19 patients and determine the diverse disease trajectories. The initial SARS-CoV-2 penetrance and replication in the host causes death of infected cells, determining the viral response.

View Article and Find Full Text PDF

Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect.

View Article and Find Full Text PDF

Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (), Gd(iii)-chelate (), and sulforhodamine B () moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of and to provide bi-functionalized LNPs ().

View Article and Find Full Text PDF

Preclinical and clinical studies provide evidence for aspirin as a preventative agent for cancer. Compelling direct evidence supports a chemopreventive effect of aspirin in individuals at high risk of developing colorectal cancer due to Lynch syndrome, while indirect evidence indicates that aspirin may reduce the risk of and mortality from sporadic colorectal cancer. There is weaker evidence for a protective effect of aspirin against all cancers taken as a group.

View Article and Find Full Text PDF

More than a century after its synthesis, daily aspirin, given at a low dose, is a milestone treatment for the secondary prevention of cardiovascular disease (CVD). Its role in primary prevention of CVD is still debated. Older randomized controlled trials showed that aspirin reduced the low incidence of myocardial infarction but correspondingly increased the low incidence of serious gastrointestinal bleeds without altering mortality.

View Article and Find Full Text PDF

Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects.

View Article and Find Full Text PDF
Article Synopsis
  • Matrix metalloproteinases (MMPs) are key players in tumor growth and spread, and the compound 4'-geranyloxyferulic acid (GOFA) shows promise for its anti-tumor and anti-inflammatory effects.
  • In experiments with U937 and HCT116 cancer cells, GOFA was found to reduce abnormal cell growth and MMP-9 activity caused by lipopolysaccharide (LPS), leading to decreased cell migration.
  • The study suggests that GOFA's ability to inhibit the ROS/ERK pathway and prevent apoptosis and senescence may make it a valuable therapeutic option to combat tumor metastasis.
View Article and Find Full Text PDF

Rationale: The development of inhibitors of microsomal prostaglandin (PG)E synthase-1 (mPGES-1) was driven by the promise of attaining antiinflammatory agents with a safe cardiovascular profile because of the possible diversion of the accumulated substrate, PGH, towards prostacyclin (PGI).

Objectives: We studied the effect of the human mPGES-1 inhibitor, AF3485 (a benzamide derivative) on prostanoid biosynthesis in human whole blood . To characterize possible off-target effects of the compound, we evaluated: i)the impact of its administration on the systemic biosynthesis of prostanoids in a model of complete Freund's adjuvant (CFA)-induced monoarthritis in rats; ii) the effects on cyclooxygenase (COX)-2 expression and the biosynthesis of prostanoids in human monocytes and human umbilical vein endothelial cells (HUVECs) .

View Article and Find Full Text PDF

Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype.

View Article and Find Full Text PDF

Library preparation is a key step in sequencing. For RNA sequencing there are advantages to both strand specificity and working with minute starting material, yet until recently there was no kit available enabling both. The Illumina TruSeq stranded mRNA Sample Preparation kit (TruSeq) requires abundant starting material while the Takara Bio SMART-Seq v4 Ultra Low Input RNA kit (V4) sacrifices strand specificity.

View Article and Find Full Text PDF

The L-3,4-dihydroxyphenylalanine (LD) is the gold standard drug currently used to manage Parkinson's disease (PD) and to control its symptoms. However, LD could cause disease neurotoxicity due to the generation of pro-oxidant intermediates deriving from its autoxidation. In order to overcome this limitation, we have conjugated LD to the natural antioxidant glutathione (GSH) to form a codrug (GSH-LD).

View Article and Find Full Text PDF