Publications by authors named "Riccardo Tomasello"

The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.

View Article and Find Full Text PDF

Synthetic antiferromagnetic structures can exhibit the advantages of high velocity similarly to antiferromagnets with the additional benefit of being imaged and read-out through techniques applied to ferromagnets. Here, we explore the potential and limits of synthetic antiferromagnets to uncover ways to harness their valuable properties for applications. Two synthetic antiferromagnetic systems have been engineered and systematically investigated to provide an informed basis for creating devices with maximum potential for data storage, logic devices, and skyrmion racetrack memories.

View Article and Find Full Text PDF

Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device.

View Article and Find Full Text PDF

We have designed a passive spintronic diode based on a single skyrmion stabilized in a magnetic tunnel junction and studied its dynamics induced by voltage-controlled magnetic anisotropy (VCMA) and Dzyaloshinskii-Moriya interaction (VDMI). We have demonstrated that the sensitivity (rectified output voltage over input microwave power) with realistic physical parameters and geometry can be larger than 10 kV Wwhich is one order of magnitude larger than diodes employing a uniform ferromagnetic state. Our numerical and analytical results on the VCMA and VDMI-driven resonant excitation of skyrmions beyond the linear regime reveal a frequency dependence on the amplitude and no efficient parametric resonance.

View Article and Find Full Text PDF

enterocolitis (CDAC) is the most common hospital infection, burdened by an increased incidence of coagulation-related complications such as deep vein thrombosis (DVT) and disseminated intravascular coagulation (DIC) as well as a significant sepsis-related mortality. In this review, we analyzed the available data concerning the correlation between coagulation complications related to infection (CDI) and inflammasome activation, in particular the pyrin-dependent one. The little but solid available preclinical and clinical evidence shows that inflammasome activation increases the risk of venous thromboembolism (VTE).

View Article and Find Full Text PDF

The development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers.

View Article and Find Full Text PDF

Rarely essential thrombocythemia (ET) is diagnosed in more than one person within a family. Familial myeloproliferative neoplasms are underdiagnosed. In this report, we describe 6 couples of familial ET, evaluating the heterogeneity of the mutational state and the clinical presentation.

View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is frequently associated with thrombocytopenia, in most cases mild and in the absence of major bleedings. In some patients with a confirmed APS diagnosis, secondary immune thrombocytopenia (ITP) may lead to severe thrombocytopenia with consequent major bleeding. At the same time, the presence of antiphospholipid antibodies (aPL) in patients with a diagnosis of primary ITP has been reported in several studies, although with some specific characteristics especially related to the variety of antigenic targets.

View Article and Find Full Text PDF

Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging.

View Article and Find Full Text PDF

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real-space spin configuration.

View Article and Find Full Text PDF

Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field.

View Article and Find Full Text PDF

The interfacial Dzyaloshinskii-Moriya Interaction can modify the topology of droplets excited by a localized spin-polarized current. Here, we show that, in addition to the stationary droplet excitations with skyrmion number either one (topological) or zero (non-topological), there exists, for a fixed current, an excited mode with a non-stationary time behavior. We call this mode "instanton droplet", which is characterized by time domain transitions of the skyrmion number.

View Article and Find Full Text PDF