We present an optical setup for spectroscopic measurements in the infrared and of Raman shift under high pressure and at low temperature. Using a membrane-driven diamond anvil cell, the pressure can be tuned in situ up to 20 GPa and the temperatures ranges from room temperature down to 18 K in transmission mode and 13 K in reflection mode. In transmission, the setup is entirely working under vacuum to reduce the water absorption features and obtain a higher spectral stability.
View Article and Find Full Text PDFRecent progresses in the second generation REBaCuO (RE123) coated conductor (CC) have paved a way for the development of superconducting solenoids capable of generating fields well above 23.5 T, i.e.
View Article and Find Full Text PDFThe effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature.
View Article and Find Full Text PDFThe application of pressure to elemental bismuth reduces its conduction-valence band overlap, and results in a semimetal-semiconductor (SMSC) transition around 25 kbar. This transition is nominally of the topological "Lifshitz" Fermi surface variety, but there are open questions about the role of interactions at low charge densities. Using a novel pressure cell with optical access, we have performed an extensive study of bismuth's infrared conductivity under pressure.
View Article and Find Full Text PDFWe present a detailed optical study of single-crystal bismuth using infrared reflectivity and ellipsometry. Large changes in the plasmon frequency are observed as a function of temperature due to charge transfer between hole and electron Fermi pockets. In the optical conductivity, an anomalous temperature dependent midinfrared absorption feature is observed.
View Article and Find Full Text PDFWe study the nonlinear propagation of femtosecond pulses in the anomalous dispersion region of microstructured fibers, where soliton fission mechanisms play an important role. The experiment shows that the output spectrum contains, besides the infrared supercontinuum, a narrow-band 430-nm peak, carrying about one fourth of the input energy. By combining simulation and experiments, we explore the generation mechanism of the visible peak and describe its properties.
View Article and Find Full Text PDF