2D agarose substrates have recently been surprisingly shown to be permissive for cell adhesion, depending on their mechanics and the use of the adhesive proteins of fetal bovine serum (FBS) in the cell culture medium. Here, we elucidate how the cells exhibit two anchoring mechanisms depending on the amount of FBS. Under low FBS conditions, the cells recognize the surface-coupled adhesive sequences of fibronectin via the binding of the heterodimer αβ integrin.
View Article and Find Full Text PDFThe "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors.
View Article and Find Full Text PDFHMGA proteins are intrinsically disordered (ID) chromatin architectural factors characterized by three DNA binding domains (AT-hooks) that allow them to bind into the DNA minor groove of AT-rich stretches. HMGA are functionally involved in regulating transcription, RNA processing, DNA repair, and chromatin remodeling and dynamics. These proteins are highly expressed and play essential functions during embryonic development.
View Article and Find Full Text PDFIntroduction: Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.
View Article and Find Full Text PDFMetabolic end products and intermediates can exert signaling functions as chemical sources for histone posttranslational modifications, which remodel chromatin and affect gene expression. Among them, lactic acid is responsible for histone lactylation, a recently discovered histone mark that occurs in high lactate conditions, such as those resulting from the Warburg effect in cancer cells. Late-breaking studies have advanced the knowledge on the mechanisms involved in histone lactylation, requiring independent nonenzyme and enzyme-dependent reactions, which is emerging as an important hallmark of cancer cells linking metabolic changes to gene expression reprogramming.
View Article and Find Full Text PDFBreast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression.
View Article and Find Full Text PDFPACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis.
View Article and Find Full Text PDFExtracellular vesicle (EV) mediated communication has recently been proposed as one of the pivotal routes in the development of cancer metastasis. EVs are nano-sized vesicles swapped between cells, carrying a biologically active content that can promote tumor-induced immune suppression, metastasis and angiogenesis. Thus, EVs constitute a potential target in cancer therapy.
View Article and Find Full Text PDFIntroduction: Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype with the least favorable outcomes. However, recent research efforts have generated an enhanced knowledge of the biology of the disease and have provided a new, more comprehensive understanding of the multifaceted ecosystem that underpins TNBC.
Areas Covered: In this review, the authors illustrate the principal biological characteristics of TNBC, the molecular driver alterations, targetable genes, and the biomarkers of immune engagement that have been identified across the subgroups of TNBC.
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients.
View Article and Find Full Text PDFAs bioactive small proteins with antimicrobial and immunomodulatory activities that are naturally produced by all living organisms, antimicrobial peptides (AMPs) have a marked potential as next-generation antibiotics. However, their development as antibacterial agents is limited by low stability and cytotoxicity. D-BMAP18, a membrane-permeabilizing antimicrobial peptide composed of D-amino acids, has shown good antibacterial and anti-inflammatory activities but also a non-negligible cytotoxicity against eukaryotic cell lines.
View Article and Find Full Text PDFThe transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial-mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal-epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression.
View Article and Find Full Text PDFIntroduction: Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat because of its heterogeneity and lack of specific therapeutic targets. High Mobility Group A (HMGA) proteins are chromatin architectural factors that have multiple oncogenic functions in breast cancer, and they represent promising molecular therapeutic targets for this disease.
Areas Covered: We offer an overview of the strategies that have been exploited to counteract HMGA oncoprotein activities at the transcriptional and post-transcriptional levels.
Natural antisense long non-coding RNAs (lncRNAs) are regulatory RNAs transcribed from the opposite strand of either protein coding or non-coding genes, able to modulate their own sense gene expression. Hence, their dysregulation can lead to pathologic processes. Cancer is a complex class of diseases determined by the aberrant expression of a variety of factors, among them, the oncofetal chromatin architectural proteins High Mobility Group A (HMGA) modulate several cancer hallmarks.
View Article and Find Full Text PDFHigh mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e.
View Article and Find Full Text PDFChromatin accessibility plays a critical factor in regulating gene expression in cancer cells. Several factors, including the High Mobility Group A (HMGA) family members, are known to participate directly in chromatin relaxation and transcriptional activation. The HMGA1 oncogene encodes an architectural chromatin transcription factor that alters DNA structure and interacts with transcription factors favouring their landing onto transcription regulatory sequences.
View Article and Find Full Text PDFBackground: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1.
View Article and Find Full Text PDFGlioblastoma (GBM) is an extremely aggressive tumor of the central nervous system, with a prognosis of 12-15 months and just 3-5% of survival over 5 years. This is mainly because most patients suffer recurrence after treatment that currently consists in maximal resection followed by radio- and chemotherapy with temozolomide. The recurrent tumor shows a more aggressive behavior due to a phenotypic shift toward the mesenchymal subtype.
View Article and Find Full Text PDFPlasticity is an essential condition for cancer cells to invade surrounding tissues. The nucleus is the most rigid cellular organelle and it undergoes substantial deformations to get through environmental constrictions. Nuclear stiffness mostly depends on the nuclear lamina and chromatin, which in turn might be affected by nuclear architectural proteins.
View Article and Find Full Text PDFExosomes are one of the most important mediators of the cross talk occurring between glioma stem cells (GSCs) and the surrounding microenvironment. We have previously shown that exosomes released by patient-derived glioma-associated stem cells (GASC) are able to increase, in vitro, the aggressiveness of both GSC and glioblastoma cell lines. To understand which molecules are responsible for this tumour-supporting function, we performed a descriptive proteomic analysis of GASC-exosomes and identified, among the others, Semaphorin7A (SEMA7A).
View Article and Find Full Text PDFHMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
April 2018
Cancer heterogeneity is one of the factors that constitute an obstacle towards an efficient targeting of this multifaceted disease. Molecular information can help in classifying cancer subtypes and in providing clinicians with novel targeted therapeutic opportunities. In this regard, classification of breast cancer into intrinsic subtypes based on molecular profiling represents a valuable prototype.
View Article and Find Full Text PDFDiaryldienone derivatives with accessible β-carbons show strong anti-neoplastic properties, related to their ability to make covalent adducts with free thiols by Michael addition, and low toxicity in vivo. Accumulation of poly-ubiquitylated proteins, activation of the unfolded protein response (UPR) and induction of cell death are universal hallmarks of their activities. These compounds have been characterized as inhibitors of isopeptidases, a family of cysteine-proteases, which de-conjugate ubiquitin and ubiquitin-like proteins from their targets.
View Article and Find Full Text PDFCancer cells secrete proteins that modify the extracellular environment acting as autocrine and paracrine stimulatory factors and have a relevant role in cancer progression. The HMGA1 oncofetal protein has a prominent role in controlling the expression of an articulated set of genes involved in various aspect of cancer cell transformation. However, little is known about its role in influencing the secretome of cancer cells.
View Article and Find Full Text PDFHigh mobility group A proteins of vertebrates, HMGA1 and 2, are chromatin architectural factors involved in development, cell differentiation, and neoplastic transformation. Here, we characterize an amphioxus HMGA gene ortholog and analyze its expression. As a basal chordate, amphioxus is well placed to provide insights into the evolution of the HMGA gene family, particularly in the transition from invertebrates to vertebrates.
View Article and Find Full Text PDF