Publications by authors named "Riccardo Ruixi Chen"

The reaction kinetics of spin-polarized oxygen evolution reaction (OER) can be enhanced by ferromagnetic (FM) catalysts under an external magnetic field. However, applying a magnetic field necessitates additional energy consumption and creates design difficulties for OER. Herein, we demonstrate that a single-domain FM catalyst without external magnetic fields exhibits a similar OER increment to its magnetized multi-domain one.

View Article and Find Full Text PDF

The efficiency of electrolytic hydrogen production is limited by the slow reaction kinetics of oxygen evolution reaction (OER). Surface-reconstructed ferromagnetic (FM) catalysts with a spin-pinning effect at the FM/oxyhydroxide interface could enhance the spin-dependent OER kinetics. However, in real-life applications, electrolyzers are operated at elevated temperature, which may disrupt the spin orientations of FM catalysts and limit their performance.

View Article and Find Full Text PDF

Rational design of active oxygen evolution reaction (OER) catalysts is critical for the overall efficiency of water electrolysis. The differing spin states of the OER reactants and products is one of the factors that slows OER kinetics. Thus, spin conservation plays a crucial role in enhancing OER performance.

View Article and Find Full Text PDF

Exploring highly efficient catalysts for the oxygen evolution reaction (OER) is essential for water electrolysis. Cost-effective transition-metal oxides with reasonable activity are raising attention. Recently, OER reactants' and products' differing spin configurations have been thought to cause slow reaction kinetics.

View Article and Find Full Text PDF