Policy-guided Monte Carlo is an adaptive method to simulate classical interacting systems. It adjusts the proposal distribution of the Metropolis-Hastings algorithm to maximize the sampling efficiency, using a formalism inspired by reinforcement learning. In this work, we first extend the policy-guided method to deal with a general state space, comprising, for instance, both discrete and continuous degrees of freedom, and then apply it to a few paradigmatic models of glass-forming mixtures.
View Article and Find Full Text PDFThe transformer architecture has become the state-of-art model for natural language processing tasks and, more recently, also for computer vision tasks, thus defining the vision transformer (ViT) architecture. The key feature is the ability to describe long-range correlations among the elements of the input sequences, through the so-called self-attention mechanism. Here, we propose an adaptation of the ViT architecture with complex parameters to define a new class of variational neural-network states for quantum many-body systems, the ViT wave function.
View Article and Find Full Text PDF