Orthorhombic κ-GaO thin films were grown for the first time on polycrystalline diamond free-standing substrates by metal-organic vapor phase epitaxy at a temperature of 650 °C. Structural, morphological, electrical, and photoelectronic properties of the obtained heterostructures were evaluated by optical microscopy, X-ray diffraction, current-voltage measurements, and spectral photoconductivity, respectively. Results show that a very slow cooling, performed at low pressure (100 mbar) under a controlled He flow soon after the growth process, is mandatory to improve the quality of the κ-GaO epitaxial thin film, ensuring a good adhesion to the diamond substrate, an optimal morphology, and a lower density of electrically active defects.
View Article and Find Full Text PDFNitroaromatic explosives are the most common explosives, and their detection is important to public security, human health, and environmental protection. In particular, the detection of solid explosives through directly revealing the presence of their vapors in air would be desirable for compact and portable devices. In this study, amino-functionalized carbon nanotubes were used to produce resistive sensors to detect nitroaromatic explosives by interaction with their vapors.
View Article and Find Full Text PDF