Clinical databases typically include, for each patient, many heterogeneous features, for example blood exams, the clinical history before the onset of the disease, the evolution of the symptoms, the results of imaging exams, and many others. We here propose to exploit a recently developed statistical approach, the Information Imbalance, to compare different subsets of patient features and automatically select the set of features that is maximally informative for a given clinical purpose, especially in minority classes. We adapt the Information Imbalance approach to work in a clinical framework, where patient features are often categorical and are generally available only for a fraction of the patients.
View Article and Find Full Text PDF