Publications by authors named "Riccardo Destro"

The experimental electron density distribution (EDD) of 1-methyluracil (1-MUR) was obtained by single crystal X-ray diffraction (XRD) experiments at 23 K. Four different structural models fitting an extensive set of XRD data to a resolution of (sinθ/λ) = 1.143 Å are compared.

View Article and Find Full Text PDF

The possible occurrence of static/dynamic disorder at the Mg site in pyrope (MgAlSiO), with or without anharmonic contribution to the thermal vibrations even at low temperatures, has been largely debated but conclusions were contrasting. Here a report is given on the experimental charge density distribution, ρ, of synthetic pyrope at T = 30 K, built through a Stewart multipolar expansion up to l = 5 and based on a very precise and accurate set of in-home measured single-crystal X-ray diffraction amplitudes with a maximum resolution of 0.44 Å.

View Article and Find Full Text PDF

The accurate, experimental charge density distribution, ρ(r), of the potent antimalarial drug dihydroartemisinin (DHA) has been derived for the first time from single-crystal X-ray diffraction data at T=100(2) K. Gas-phase and solid-state DFT simulations have also been performed to provide a firm basis of comparison with experimental results. The quantum theory of atoms in molecules (QTAIM) has been employed to analyse the ρ(r) scalar field, with the aim of classifying and quantifying the key real-space elements responsible for the known pharmacophoric features of DHA.

View Article and Find Full Text PDF

The accurate gas-phase equilibrium structures on the ground-state potential energy surface of the complete series of fluorinated and chlorinated cyclobutene derivatives with C(2v) symmetry have been evaluated at DFT PBE0/6-311++G(d,p) theory level. The optimized geometries have been compared with all the available experimental data reported in the literature, as obtained by microwave spectroscopy (MW) and gas-phase electron diffraction (GED) techniques. For hexafluorocyclobutene and 1,2-dichloro-3,3',4,4'-tetrafluorocyclobut-1-ene, the results of accurate low-temperature single-crystal X-ray diffraction experiments have also been considered.

View Article and Find Full Text PDF

The conversion of a di-tert-butyl-methylthiiranium ion into thietanium ion, that is reported in the literature as taking place spontaneously at 25 degrees C in a CD(2)Cl(2) solution, has been discovered to occur quantitatively at room temperature (RT) also in the crystalline state. The ring enlargement reaction is accompanied, in the solid phase, by a modest deterioration of the quality of the sample under investigation, and all three specimens here studied by in situ crystallography maintained their single-crystal nature up to 100% conversion. The rearrangement reaction implies the breaking of a C-S bond and the formation of a new bond of the same type, together with the migration of a methyl group.

View Article and Find Full Text PDF

The effect of the methoxy substituent on the structure, crystal packing, and electrostatic properties of hexafluorocyclobutene (C(4)F(6)) was investigated in the solid-state with DFT-B3LYP calculations. Full geometry optimizations were done for the parent compound and its two vinyl methoxy derivatives C(4)F(5)OCH(3) and C(4)F(4)(OCH(3))(2), starting from the structures obtained by single-crystal X-ray diffraction at low temperature. A full topological analysis, followed by the calculation of several electrostatic properties, was performed on the periodic electron density using the quantum theory of atoms in molecules.

View Article and Find Full Text PDF

Anisotropic displacement parameters (ADPs) are compared for H atoms estimated using three recently described procedures, both among themselves and with neutron diffraction results. The results convincingly demonstrate that all methods are capable of giving excellent results for several benchmark systems and identify systematic discrepancies for several atom types. A revised and extended library of internal H-atom mean-square displacements is presented for use with Madsen's SHADE web server [J.

View Article and Find Full Text PDF

The total experimental electron density distributions rho(r) of zwitterionic L- and DL-alanine crystals, as derived from extensive sets of X-ray diffracted intensities collected at 23 and 19 K, are compared to gain an insight into the different physical properties of the two related chiral compounds in the solid state and to explore the extent of the rho(r) transferability. Relevant parameters that characterize the two crystal forms are obtained, showing differences and similarities in terms of (i) geometric descriptors, (ii) topological indexes, (iii) molecular electrostatic potential Phi(r) distributions, (iv) atomic volumes and charges, (v) molecular electric moments, and (vi) electrostatic interaction energies. To assess the relative stability of the racemate with respect to the pure enantiomer, the crystal lattice energies, as obtained through DFT fully periodic calculations, are also discussed and compared with the experimental sublimation enthalpies after correction for the proton-transfer energies.

View Article and Find Full Text PDF

The total charge density distribution rho(r) of the colossal magnetoresistive transition metal sulfide FeCr(2)S(4) was evaluated through a multipole formalism from a set of structure factors obtained both experimentally, by means of single crystal high-quality x-ray diffraction data collected at T=23 K, and theoretically, with an extended-basis unrestricted Hartree-Fock periodic calculation on the experimental geometry. A full topological analysis, followed by the calculation of local energy density values and net atomic charges, was performed using the quantum theory of atoms in molecules. The experimental and theoretical results were compared.

View Article and Find Full Text PDF

A combined experimental and theoretical charge density study of an angiotensin II receptor antagonist (1) is presented focusing on electrostatic properties such as atomic charges, molecular electric moments up to the fourth rank and energies of the intermolecular interactions, to gain an insight into the physical nature of the drug-receptor interaction. Electrostatic properties were derived from both the experimental electron density (multipole refinement of X-ray data collected at T=17 K) and the ab initio wavefunction (single molecule and fully periodic calculations at the DFT level). The relevance of SO and SN intramolecular interactions on the activity of 1 is highlighted by using both the crystal and gas-phase geometries and their electrostatic nature is documented by means of QTAIM atomic charges.

View Article and Find Full Text PDF

The total experimental electron density rho(r), its Laplacian inverted delta(2)rho(r), the molecular dipole moment, the electrostatic potential phi(r), and the intermolecular interaction energies have been obtained from an extensive set of single-crystal X-ray diffracted intensities, collected at T = 70(1) K, for the fungal metabolite austdiol (1). The experimental results have been compared with theoretical densities from DFT calculations on the isolated molecule and with fully periodic calculations. The crystal structure of (1) consists of zigzag ribbons extended along one cell axis and formed by molecules connected by both OH.

View Article and Find Full Text PDF

An experimental study of the electron-density distribution rho(r) in an angiotensin II receptor antagonist 1 has been made on the basis of single-crystal X-ray diffraction data collected at a low temperature. The crystal structure of 1 consists of infinite ribbons in which molecules are connected by an N-H..

View Article and Find Full Text PDF

High-resolution X-ray diffraction data were collected at T = 19 K from two similar spherical crystals of the fungal metabolite citrinin, C(13)H(14)O(5). The two data sets were of markedly different quality, one data set (MQ, medium quality) comprising a single octant of the reciprocal lattice and including reflections with obviously peculiar intensity profiles while the second (HQ, high quality) comprised a hemisphere of reflections and showed no flawed profiles. Parallel multipolar refinements were carried out for both.

View Article and Find Full Text PDF

The electron charge distribution in a strongly twisted push-pull ethylene [PPE, 3-(1,3-diisopropyl-2-imidazolidinylidene)-2,4-pentanedione] has been determined by low temperature (T = 21 K) single-crystal X-ray diffraction analysis. The derived electronic properties are consistent with a zwitterionic molecule, as indicated by a charge transfer of 0.82(16) e from the push to the pull moieties and a charge polarization of 0.

View Article and Find Full Text PDF

The title compound, (7R,8S)-7,8-dihydroxy-3,7-dimethyl-6-oxo-7,8-dihydro-6H-isochromene-5-carbaldehyde, C(12)H(12)O(5), is a trans-vicinal diol. Of the two fused rings, which lie approximately in the same plane, the pyran ring is almost perfectly planar, while the cyclohexenone ring adopts a slightly distorted half-chair conformation. The crystal packing is dictated by two strong intermolecular O-H.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, C(22)H(31)N(3)O(4).H(2)O, incorporates one water molecule, which is hydrogen bonded to the 3-oxo O atom of the indolizidinone system. The two rings of the peptidomimetic molecule are trans-fused, with the six-membered ring having a slightly distorted half-chair conformation and the five-membered ring having a perfect envelope conformation.

View Article and Find Full Text PDF