Publications by authors named "Riccardo Dal Bello"

Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals.

View Article and Find Full Text PDF

Purpose: To compare patient discomfort and immobilisation performance of open-face and closed immobilization masks in cranial radiotherapy.

Material And Methods: This was a single-center randomized self-controlled clinical trial. At CT simulation, an open-face and closed mask was made for each patient and treatment plans with identical dose prescription were generated for each mask.

View Article and Find Full Text PDF
Article Synopsis
  • Stereotactic body radiation therapy (SBRT) for ultra-central lung tumors has high toxicity rates.
  • The proximal bronchial tree (PBT) was divided into seven sections to study differences in radiosensitivity.
  • A risk-adapted SBRT regimen with a specific dose has shown excellent tumor control and lower severe toxicity rates, with a modeling study suggesting a dose threshold for low bronchial toxicity.
View Article and Find Full Text PDF

Although magnetic resonance imaging (MRI) has become standard diagnostic workup for head and neck malignancies and is currently recommended by most radiological societies for pharyngeal and oral carcinomas, its utilization in radiotherapy has been heterogeneous during the last decades. However, few would argue that implementing MRI for annotation of target volumes and organs at risk provides several advantages, so that implementation of the modality for this purpose is widely accepted. Today, the term MR-guidance has received a much broader meaning, including MRI for adaptive treatments, MR-gating and tracking during radiotherapy application, MR-features as biomarkers and finally MR-only workflows.

View Article and Find Full Text PDF

•Data on cardiac toxicity after SBRT for ultra-central lung tumors remains limited.•We analyzed the dose to 18 cardiac sub-structures and cardiovascular toxicity.•A SBRT regimen of 45 Gy in 8-10 fractions yields good local control and low toxicity.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup.

View Article and Find Full Text PDF

Background And Purpose: The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions.

View Article and Find Full Text PDF

Background: Treatment of head and neck cancer on linear accelerators with on-board magnetic resonance imaging (MR-linac) might be beneficial to reduce side effects and increase accuracy. For many head and neck cancer patients, dose coverage of the often superficially located planning target volumes (PTVs) is required. This study examines the impact of the electron return effect (ERE) on the surface dose in MR-guided radiotherapy (MRgRT) compared to conventional radiotherapy.

View Article and Find Full Text PDF

Purpose: Volumetric modulated arc therapy (VMAT) is a widespread technique for the delivery of normo-fractionated radiation therapy (NFRT) and stereotactic body radiation therapy (SBRT). It is associated with a significant hardware burden requiring dose rate modulation, collimator movement and gantry rotation synchronisation. Patient specific quality assurance (PSQA) guarantees that the linacs can precisely and accurately deliver the planned dose.

View Article and Find Full Text PDF

Background And Purpose: The requirement of computed tomography (CT) for radiotherapy planning may be bypassed by synthetic CT (sCT) generated from magnetic resonance (MR), which has recently led to the clinical introduction of MR-only radiotherapy for specific sites. Further developments are required for abdominal sCT, mostly due to the presence of mobile air pockets affecting the dose calculation. In this study we aimed to overcome this limitation for abdominal sCT at a low field (0.

View Article and Find Full Text PDF

The aim of this study was to quantify anatomical changes of parotids and submandibular glands and evaluate potential dosimetric advantages during weekly adaptive MR-guided radiotherapy (MRgRT) for the definitive treatment of head and neck cancer (HNC). The data and plans of 12 patients treated with bilateral intensity-modulated radiotherapy for HNC using MR-linac, with weekly offline adaptations, were prospectively evaluated. The positional and volumetric changes of the salivary glands were analyzed by manual segmentation in weekly MRI images and the dosimetric impact of these anatomical changes on the adapted treatment plans was assessed.

View Article and Find Full Text PDF

Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization.

View Article and Find Full Text PDF

Purpose: To assess the effects of daily adaptive MR-guided replanning in stereotactic body radiation therapy (SBRT) of liver metastases based on a patient individual longitudinal dosimetric analysis.

Methods: Fifteen patients assigned to SBRT for oligometastatic liver metastases underwent daily MR-guided target localization and on-table treatment plan re-optimization. Gross tumor volume (GTV) and organs at risk (OARs) were adapted to the anatomy-of-the-day.

View Article and Find Full Text PDF

Data of thoracic in-field reirradiation with two courses of stereotactic body radiotherapy (SBRT) is scarce. Aim of this study is to investigate feasibility and safety of this approach. Patients with a second course of thoracic SBRT and planning target volume (PTV) overlap were analyzed in this retrospective, multicenter study.

View Article and Find Full Text PDF

The introduction of real-time imaging by magnetic resonance guided linear accelerators (MR-Linacs) enabled adaptive treatments and gating on the tumor position. Different end-to-end tests monitored the accuracy of our MR-Linac during the first year of clinical operation. We report on the stability of these tests covering a static, adaptive and gating workflow.

View Article and Find Full Text PDF

Proton and ion beam therapy has proven to benefit tumour control with lower side-effects, mostly in paediatrics. Here we demonstrate a feasible technique for proton and ion beam spectroscopy (PIBS) capable of determining the elemental compositions of the irradiated tissues during particle therapy. This follows the developments in prompt gamma imaging for online range verification and the inheritance from prompt gamma neutron activation analysis.

View Article and Find Full Text PDF

The physical range uncertainty limits the exploitation of the full potential of charged particle therapy. In this work, we face this issue aiming to measure the absolute Bragg peak position in the target. We investigate p, He, C and O beams accelerated at the Heidelberg Ion-Beam Therapy Center.

View Article and Find Full Text PDF

Purpose: The presence of range uncertainties hinders the exploitation of the full potential of charged particle therapy. Several range verification techniques have been proposed to mitigate this limitation. Prompt gamma spectroscopy (PGS) is among the most promising solutions for online and in vivo range verification.

View Article and Find Full Text PDF

Purpose: Range uncertainties limit the potential of charged particle therapy. In vivo and online range verification techniques could increase the confidence in the dose delivery distribution and lead to more conformal treatments. Prompt gamma imaging and prompt gamma spectroscopy (PGS) have been demonstrated for such a purpose.

View Article and Find Full Text PDF