Publications by authors named "Riccardo D'Elia"

Inflammation can be an unwanted consequence or cause of debilitating diseases of infectious and non-infectious aetiologies. Current anti-inflammatory medications have several deficiencies including lack of specificity and undesirable side effects. Herein, the potential of non-ionic surfactant vesicles (NISV) comprised of monopalmityol glycerol, dicetyl phosphate and cholesterol) as an anti-inflammatory drug and their mode of action is investigated.

View Article and Find Full Text PDF

Therapies that modulate and appropriately direct the immune response are promising candidates for the treatment of infectious diseases. One such candidate therapeutic is DZ13, a short, synthetic, single-stranded DNA molecule. This molecule has enzymatic activity and can modulate the immune response by binding to and degrading the mRNA encoding a key immuno-regulatory molecule.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are capable of rapid response to a wide variety of immune challenges, including various respiratory pathogens. Despite this, their role in the immune response against the lethal intracellular bacterium Francisella tularensis is not yet known. In this study, we demonstrate that infection of the airways with F.

View Article and Find Full Text PDF

The field of brain drug delivery faces many challenges that hinder development and testing of novel therapies for clinically important central nervous system disorders. Chief among them is how to deliver large biologics across the highly restrictive blood-brain barrier. Non-ionic surfactant vesicles (NISV) have long been used as a drug delivery platform for cutaneous applications and have benefits over comparable liposomes in terms of greater stability, lower cost and suitability for large scale production.

View Article and Find Full Text PDF

Introduction: Exposure to ricin can be lethal and treatments that are under development have short windows of opportunity for administration after exposure. It is therefore essential to achieve early detection of ricin exposure to provide the best prognosis for exposed individuals. Ricin toxin can be detected in clinical samples via several antibody-based techniques, but the efficacy of these can be limited due to the rapid processing and cellular uptake of toxin in the body and subsequent low blood ricin concentrations.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a Gram-negative intracellular bacterium which is recalcitrant to antibiotic therapy. There also is currently no licensed vaccine for this potentially fatal pathogen, further highlighting the requirement for better therapeutics to treat the disease melioidosis. Here we use an oral delivery platform, the bilosome to entrap already- licensed antibiotics.

View Article and Find Full Text PDF

Organ tissue damage is a key contributor to host morbidity and mortality following infection with microbial agents. Severe immune responses, excessive cellular recruitment and necrosis of cells all play a role in disease pathology. Understanding the pathogenesis of disease can aid in identifying potential new therapeutic targets or simply act as a diagnostic tool.

View Article and Find Full Text PDF

Emerging pathogenic viruses such as Ebola and Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV) can cause acute infections through the evasion of the host's antiviral immune responses and by inducing the upregulation of inflammatory cytokines. This immune dysregulation, termed a cytokine storm or hypercytokinemia, is potentially fatal and is a significant underlying factor in increased mortality of infected patients. The prevalence of global outbreaks in recent years has offered opportunities to study the progression of various viral infections and have provided an improved understanding of hypercytokinemia associated with these diseases.

View Article and Find Full Text PDF

Introduction: The role of damage-associated molecular pattern HMGB1 signalling in a murine BALB/c model of severe respiratory melioidosis (Burkholderia pseudomallei infection) was explored in this study.

Methods: Time course experiments were performed.

Results: It was established that HMGB1 was released in concert with increasing weight of organs and increasing concentration of liver enzymes in the blood a short time after cytokine release.

View Article and Find Full Text PDF

Francisella tularensis is an intracellular bacterium that has the ability to multiply within the macrophage. The phenotype of a macrophage can determine whether the infection is cleared or the host succumbs to disease. Previously published data has suggested that F.

View Article and Find Full Text PDF

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is refractory to antibiotic treatment and there is currently no licensed vaccine. In this report we detail the construction and protective efficacy of a polysaccharide-protein conjugate composed of B.

View Article and Find Full Text PDF

Antibiotic efficacy is greatly enhanced the earlier it is administered following infection with a bacterial pathogen. However, in a clinical setting antibiotic treatment usually commences following the onset of symptoms, which in some cases (e.g.

View Article and Find Full Text PDF

Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase.

View Article and Find Full Text PDF

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals.

View Article and Find Full Text PDF

Inflammation is the body's first line of defense against infection or injury, responding to challenges by activating innate and adaptive responses. Microbes have evolved a diverse range of strategies to avoid triggering inflammatory responses. However, some pathogens, such as the influenza virus and the Gram-negative bacterium Francisella tularensis, do trigger life-threatening "cytokine storms" in the host which can result in significant pathology and ultimately death.

View Article and Find Full Text PDF

Francisella tularensis is an intracellular pathogen and is able to invade several different cell types, in particular macrophages, most commonly through phagocytosis. A flow cytometric assay was developed to measure bacterial uptake, using a fluorescein isothiocyanate-labelled anti-F. tularensis lipopolysaccharide antibody in conjunction with antibodies to cell surface markers, in order to determine the specific cell phenotypes that were positive for the bacteria.

View Article and Find Full Text PDF

In murine models of Venezuelan equine encephalitis virus (VEEV) infection, the neutralising monoclonal antibody 1A3B-7 has been shown to be effective in passive protection from challenge by the aerosol route with serogroups I, II and Mucambo virus (formally VEE complex subtype IIIA). This antibody is able to bind to all serogroups of the VEEV complex when used in ELISA and therefore is an excellent candidate for protein engineering in order to derive a humanised molecule suitable for therapeutic use in humans. A Complementarity Determining Region (CDR) grafting approach using human germline IgG frameworks was used to produce a panel of humanised variants of 1A3B-7, from which a single candidate molecule with retained binding specificity was identified.

View Article and Find Full Text PDF

Background: Trichuris muris in the mouse is an invaluable model for infection of man with the gastrointestinal nematode Trichuris trichiura. Three T. muris isolates have been studied, the Edinburgh (E), the Japan (J) and the Sobreda (S) isolates.

View Article and Find Full Text PDF

The chronic nature of intestinal nematode infections suggests that these parasites have evolved sophisticated immunomodulatory strategies. The induction of regulatory responses during chronic helminth infections could be advantageous to the host by minimizing damage incurred by these organisms. Regulation of the host immune response to infection could however be exploited by parasites as a survival strategy.

View Article and Find Full Text PDF

This study explores the connection between changes in gene expression and the genes that determine strain survival during suspension culture, using the model eukaryotic organism, Saccharomyces cerevisiae. The Saccharomyces cerevisiae homozygous diploid deletion pool (HDDP), and the BY4743 parental strain were grown for 18 h in a rotating wall vessel (RWV), a suspension culture device optimized to minimize the delivered shear. In addition to the reduced shear conditions, the RWVs were also placed in a static position or in a shaker in order to change the amount of shear stress on the cells.

View Article and Find Full Text PDF

This study identifies genes that determine length of lag phase, using the model eukaryotic organism, Saccharomyces cerevisiae. We report growth of a yeast deletion series following variations in the lag phase induced by variable storage times after drying-down yeast on filters. Using a homozygous diploid deletion pool, lag times ranging from 0 h to 90 h were associated with increased drop-out of mitochondrial genes and increased survival of nuclear genes.

View Article and Find Full Text PDF