Solvent permeation across membranes is limited due to physical resistance to diffusion from the selective layer within the membrane and to plasticizing effects generated by the solvent molecules onto the polymeric macromolecular matrix. Nano-composite thin film membranes provide promising routes to generate controlled microstructural separation materials with higher selectivities and permeabilities. Here, the fabrication of nano-composite based on octamethyl-polyhedral oligomeric silsesquioxane - hexamethyldisiloxane thin film membranes is demonstrated by aerosol assisted atmospheric plasma deposition onto pre-formed nano-porous membrane supports for the first time.
View Article and Find Full Text PDFGangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2014
Antifog surfaces are necessary for any application requiring optical efficiency of transparent materials. Surface modification methods aimed toward increasing solid surface energy, even when supposed to be permanent, in fact result in a nondurable effect due to the instability in air of highly hydrophilic surfaces. We propose the strategy of combining a hydrophilic chemistry with a nanotextured topography, to tailor a long-lasting antifog modification on commercial transparent plastics.
View Article and Find Full Text PDFA procedure based on surface plasmon resonance (SPR) is proposed to monitor the lateral mobility of lipid molecules in solid-supported bilayer lipid membranes (ssBLMs), an essential prerequisite for the formation of important microdomains called lipid rafts (LRs). The procedure relies on the marked tendency of the ganglioside GM1 to be recruited by LRs and to act as a specific receptor of the beta-subunit of the cholera toxin (ChTB). In the presence of both GM1 and ChTB, spontaneous formation of lipid rafts domains in mobile ssBLMs is accompanied by an appreciable increase in the amount of adsorbed ChTB, as monitored by SPR.
View Article and Find Full Text PDFIn this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy.
View Article and Find Full Text PDFThe behavior of cells in terms of cell-substrate and cell-cell interaction is dramatically affected by topographical characteristics as shape, height, and distance, encountered in their physiological environment. The combination of chemistry and topography of a biomaterial surface influences in turns, important biological responses as inflammatory events at tissue-implant interface, angiogenesis, and differentiation of cells. By disentangling the effect of material chemistry from the topographical one, the possibility of controlling the cell behavior can be provided.
View Article and Find Full Text PDFIn this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2009
In designing new biomaterials, it is of outstanding importance to consider how cells respond to specific chemical and topographical features on the material surface. The behavior of most cell types in vivo is strictly related to specific chemical and topographical cues that characterize the extra cellular environment. In particular, during their lives cells react to topographical patterns such as those of the extracellular matrix (ECM), of micro and/or nanometric dimensions.
View Article and Find Full Text PDFIn this work plasma etching processes have been studied to roughen and fluorinate polystyrene surface as an easy method to achieve a superhydrophobic slippery character. Radiofrequency discharges have been fed with CF(4)/O(2) mixtures and the effect of the O(2):CF(4) ratio, the input power, and the treatment duration have been investigated in terms of wettability, with focus on sliding performances. For this purpose, surface morphological variations, evaluated by means of scanning electron microscopy and atomic force microscopy, together with the chemical assessment by X-ray photoelectron spectroscopy, have been correlated with water contact angle hysteresis and volume resolved sliding angle measurements.
View Article and Find Full Text PDFThis paper reports on human hepatocytes cultured in a galactosylated membrane bioreactor in order to explore the modulation of the effects of a pro-inflammatory cytokine, Interleukin-6 (IL-6) on the liver cells at molecular level. In particular the role of IL-6 on gene expression and production of a glycoprotein, fetuin-A produced by hepatocytes, was investigated by culturing hepatocytes in the membrane bioreactor, both in the absence and presence of IL-6 (300 pg/ml). IL-6 modulated the fetuin-A gene expression, synthesis and release by primary human hepatocytes cultured in the bioreactor.
View Article and Find Full Text PDFNew strategies aimed to surface modification of polymeric membranes are crucial to optimise cell-biomaterial interactions in vivo and in vitro biohybrid systems. In this paper, we investigated the surface modification of Polyethersulfone (PES) membranes by plasma polymerisation of acrylic acid monomers (PES-pdAA) and by immobilization of galactonic acid through a hydrophilic "spacer arm" molecule (PES-pdAA-SA-GAL). The modification steps were characterised by high resolution X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFThe design of new polymeric biomaterials together with new strategies to modify membrane surface are crucial to optimise cell-biomaterial interactions in vivo and in vitro biohybrid systems. In this study we report on the novel semipermeable membranes synthesised from a polymeric blend of modified polyetheretherketone and polyurethane able to support the long-term maintenance and differentiation of human liver cells and on the surface modification of polyethersulfone membranes by plasma polymerisation of acrylic acid monomers and by immobilization of arginine-glycine-aspartic acid (RGD) peptide through a hydrophilic "spacer arm" molecule. The performance of the modified and unmodified membranes was tested by evaluation of the liver function expression of primary human hepatocytes in terms of albumin production, protein secretion and drug biotransformation.
View Article and Find Full Text PDFWe used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures.
View Article and Find Full Text PDFA photo-immobilisation procedure was utilised to create two different micro-patterned surfaces (tracks 25 and 5 microm wide) of hyaluronan (Hyal) on polyethylene-terephthalate (PET) previously plasma activated. Aim of the study was to investigate the proliferation and re-differentiation capacity of articular chondrocytes cultured on micro-patterned Hyal, compared to homogeneous Hyal and plain plasma-treated (pt-)PET substrates. Cytotoxicity, cell proliferation, activation and differentiation of articular knee cartilage chondrocytes (Mongrel sheep) were evaluated after 14 days of culture.
View Article and Find Full Text PDFIn this paper we report on the metabolic response of human hepatocytes grown on polyethersulfone membranes surface modified with a plasma-deposited acrylic acid coating and RGD peptide covalently immobilized through a "spacer arm" molecule. The modified surfaces were characterized by means of X-ray photoelectron spectroscopy and water contact angle measurements. The performance of modified and unmodified membranes was evaluated by assessing the expression of liver specific and biotransformation functions of human hepatocytes.
View Article and Find Full Text PDFContinuous and modulated glow discharges were used to deposit thin films from acrylic acid vapors. Different deposition regimes were investigated, and their effect on chemical composition, morphology and homogeneity of the coatings, as well as on their stability in water and resistance to sterilization. Stable films were utilized in cell adhesion experiments with human fibroblasts.
View Article and Find Full Text PDF