Publications by authors named "Riccardo Casalini"

Sizable glass formers feature numerous unique properties and potential applications, but many questions regarding their glass transition dynamics have not been resolved yet. Here, we have analyzed structural relaxation times measured as a function of temperature and pressure in combination with the equation of state obtained from pressure-volume-temperature measurements. Despite evidence from previous dielectric studies indicating a remarkable sensitivity of supercooled dynamics to compression, and contrary to intuition, our results demonstrated the proof for the almost equivalent importance of thermal energy and free volume fluctuations in controlling reorientation dynamics of sizable molecules.

View Article and Find Full Text PDF

High-temperature flexible polymer dielectrics are critical for high density energy storage and conversion. The need to simultaneously possess a high bandgap, dielectric constant and glass transition temperature forms a substantial design challenge for novel dielectric polymers. Here, by varying halogen substituents of an aromatic pendant hanging off a bicyclic mainchain polymer, a class of high-temperature olefins with adjustable thermal stability are obtained, all with uncompromised large bandgaps.

View Article and Find Full Text PDF

Over the years, numerous experimental and theoretical efforts have been dedicated to investigating the mysteries of water and determining its new unexplored physical properties. Despite this, high-pressure studies of water and aqueous mixtures close to the glass transition still represent an unknown area of research. Herein, we address a fundamental issue: the validity of the density scaling concept for fast water dynamics.

View Article and Find Full Text PDF

We apply our recently-developed mean-field "SL-TS2" (two-state Sanchez-Lacombe) model to simultaneously describe dielectric α-relaxation time, , and pressure-volume-temperature () data in four polymers (polystyrene, poly(methylmethacrylate), poly(vinyl acetate) and poly(cyclohexane methyl acrylate)) and four organic molecular glass formers (-terphenyl, glycerol, PCB-62, and PDE). Previously, it has been shown that for all eight materials, the Casalini-Roland thermodynamical scaling, = (γsp) (where is temperature and is specific volume) is satisfied (R. Casalini and C.

View Article and Find Full Text PDF

Flexible large bandgap dielectric materials exhibiting ultra-fast charging-discharging rates are key components for electrification under extremely high electric fields. A polyoxafluoronorbornene (-POFNB) with fused five-membered rings separated by alkenes and flexible single bonds as the backbone, rather than conjugated aromatic structure typically for conventional high-temperature polymers, is designed to achieve simultaneously high thermal stability and large bandgap. In addition, an asymmetrically fluorinated aromatic pendant group extended from the fused bicyclic structure of the backbone imparts -POFNB with enhanced dipolar relaxation and thus high dielectric constant without sacrificing the bandgap.

View Article and Find Full Text PDF

Confinement of liquid crystals (LCs) in polymeric fibers offers a promising strategy to control liquid crystal response to external stimuli. Here, the confinement of 4-cyano-4'-pentylbiphenyl (5CB), a nematic liquid crystal, within the core of coaxially electrospun fibers composed of poly(vinylpyrrolidone) (PVP) containing different surfactants is discussed. The effects of surfactant type, surfactant concentration, and core flow rate (confinement) on the LC behavior were demonstrated using polarized optical microscopy, scanning electron microscopy, differential scanning calorimetry, Raman, and dielectric spectroscopy.

View Article and Find Full Text PDF

Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane.

View Article and Find Full Text PDF

The influence of physical aging on the β relaxation in La60Ni15Al25 bulk metallic glass has been investigated by mechanical spectroscopy. The amplitude of the β relaxation (ΔG″) decreases while its relaxation time (τ(β)) increases during aging. We find that, as in organic glasses, the changes of ln (τ(β)) and ln (ΔG(max) ) are linearly correlated with ln (τ(β)) = b - a ln (G(max)″).

View Article and Find Full Text PDF

The dynamics of Pd-based metallic glass-forming liquids (Pd(40)Ni(10)Cu(30)P(20), Pd(42.5)Ni(7.5)Cu(30)P(20), Pd(40)Ni(40)P(20), and Pd(30)Ni(50)P(20)) was studied by mechanical spectroscopy and modulated differential scanning calorimetry (MDSC).

View Article and Find Full Text PDF

The relaxational dynamics in metallic glasses (MGs) is investigated by using mechanical spectroscopy. The spectra show that in MGs there are two relaxations: (i) the α relaxation, linked to the glass transition, as observed in other classes of amorphous materials; and (ii) the β relaxation, well observed below the glass transition, with an intensity strongly dependent on the MG composition, the nature of which has been linked to the local microstructure of MGs. For the investigated MGs we find that the intensity and relaxation time of the β relaxation depends, in a reproducible fashion, on the thermal history of the samples.

View Article and Find Full Text PDF

Glass formers are defined as "type B" when they exhibit a distinct Johari-Goldstein (JG) relaxation, but lack an excess loss ("excess wing," EW) in their structural relaxation peak. By studying the dielectric spectra of a well-known type-B glass former under high pressure, we unequivocally show the existence of an EW, simultaneously with the JG relaxation. Moreover, at very high pressures (0.

View Article and Find Full Text PDF

Dielectric spectroscopy was carried out on the van der Waals liquid, 1,1(')-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC) in the supercooled state at pressures up to 218 MPa. The excess wing in this type-A glass former exhibits a response to pressure and temperature changes that is identical to that of the primary structural relaxation peak, indicating that the two processes reflect correlated molecular motions. Under no conditions was a distinct secondary peak observed in BMMPC, unlike the structurally very similar BMPC [1,1(')-bis(p-methoxyphenyl)cyclohexane].

View Article and Find Full Text PDF