Publications by authors named "Riccardo Caldini"

Background: Poly(ADP-Ribose) polymerase (PARP) activity has been demonstrated fundamental in many cellular processes, including DNA repair, cell proliferation and differentiation. In particular, PARP activity has been recently found to affect proliferation, migration, and tube formation of human umbilical vein endothelial cells. In recent times, PARP inhibitors have entered in clinical trials to potentiate cancer treatments by preventing DNA repair, but little is known about the effects performed by different drug concentrations on neoangiogenesis, an essential step in tumor growth.

View Article and Find Full Text PDF

The effect on angiogenesis of (-)-alpha-bisabolol [(-)-6-methyl-2-(4-methyl-3-cyclohexen-1-yl)-5-hepten-2-ol] (1), a widely distributed plant sesquiterpene alcohol, was investigated for the first time. Human endothelial cells treated with 1 were analyzed for their ability to differentiate and organize in microvessels and for their sensitivity to this compound in terms of cytotoxicity and cell growth inhibition. Within 24 h of the treatment with 5 microM 1, cells underwent massive death.

View Article and Find Full Text PDF

The capability of PARP activity inhibitors to prevent DNA damage recovery suggested the use of these drugs as chemo- and radio-sensitisers for cancer therapy. Our research, carried out on cultured human M14 melanoma cells, was aimed to examine if PJ-34, a potent PARP activity inhibitor of second generation, was per se able to affect the viability of these cancer cells without any DNA damaging agents. Using time-lapse videomicroscopy, we evidenced that 10 microM PJ-34 treatment induced severe mitotic defects leading to dramatic reduction of cell proliferation and to cell death.

View Article and Find Full Text PDF

Oxidative DNA damage has been implicated in the aging process and in some of its features such as telomere shortening and replicative senescence. Poly(ADP-ribosyl)ation is involved in many molecular and cellular processes, including DNA damage detection and repair, chromatin modification, transcription, and cell death pathways. We decided to examine the behavior of poly(ADP-ribosyl)ation in centenarians, i.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a posttranslational modification of proteins that consists in the transfer of ADP-ribose units from NAD+ onto protein acceptors to form long and branched polymers. PARP activity is stimulated either by genotoxic stimuli or by environmental factors. The negative charged polymers alter functional activity of several proteins involved in genome stability, gene expression, cell proliferation and differentiation.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation is a post-translational modification of protein occurring in the nucleus by poly(ADP-ribose) polymerase enzyme activity. The main role of poly(ADP-ribose) polymerase system as "nick sensor" and DNA breaks repair is based on its activation via DNA strand breaks. Furthermore, poly(ADP-ribose) polymerase modifies the binding to DNA of several transcriptional factors by poly(ADP-ribosyl)ation, thereby regulating also transcriptional gene expression.

View Article and Find Full Text PDF

Basal and H(2)O(2)-induced DNA breaks as well as DNA repair activity and efficacy of the antioxygenic system were determined in human dermal fibroblasts explanted from either (i) young donors and passaged serially to reach replicative senescence or (ii) young, old and centenarian donors and shortly propagated in culture. These fibroblasts have been employed as an in vitro and ex vivo model, respectively, to evaluate comparatively DNA integrity during senescence (increasing population doubling levels) and aging (increasing donor age). Constitutive levels of DNA total strand breaks, as determined by the alkaline extraction procedure, changed moderately among the different cell lines, which exhibited, however, significant differences in the amount of either single or double strand breaks.

View Article and Find Full Text PDF