Significant progress has been made with multipartite entanglement of discrete qubits, but continuous variable systems may provide a more scalable path toward entanglement of large ensembles. We demonstrate multipartite entanglement in a microwave frequency comb generated by a Josephson parametric amplifier subject to a bichromatic pump. We find 64 correlated modes in the transmission line using a multifrequency digital signal processing platform.
View Article and Find Full Text PDFWe describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency system on a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing responses on 16 input ports. Presto has 16 DC-bias outputs, four inputs and four outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz.
View Article and Find Full Text PDFThe electrical properties of an all-oxide core-shell ZnO-CoO nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction.
View Article and Find Full Text PDFWe present an alternative approach to pump-probe spectroscopy for measuring fast charge dynamics with an atomic force microscope (AFM). Our approach is based on coherent multifrequency lock-in measurement of the intermodulation between a mechanical drive and an optical or electrical excitation. In response to the excitation, the charge dynamics of the sample is reconstructed by fitting a theoretical model to the measured frequency spectrum of the electrostatic force near resonance of the AFM cantilever.
View Article and Find Full Text PDFNon-invasive thermal noise calibration of both torsional and flexural eigenmodes is performed on numerous cantilevers of 10 different types. We show that for all tipless and short-tipped cantilevers, the ratio of torsional to flexural mode stiffness is given by the ratio of their resonant frequency times a constant, unique to that cantilever type. By determining this constant, we enable a calibration of the torsional eigenmode, starting from a calibration of the flexural eigenmode.
View Article and Find Full Text PDFWe perform a comparative study of dynamic force measurements using an Atomic Force Microscope (AFM) on the same soft polymer blend samples in both air and liquid environments. Our quantitative analysis starts with calibration of the same cantilever in both environments. Intermodulation AFM (ImAFM) is used to measure dynamic force quadratures on the same sample.
View Article and Find Full Text PDFFriction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive.
View Article and Find Full Text PDFAtomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This calibration is performed without reference to a global standard, hindering the robust comparison of force measurements reported by different laboratories. Here, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others-standardising AFM force measurements-and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry.
View Article and Find Full Text PDFWe use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
View Article and Find Full Text PDF