In this work, we report anstudy of the structural and thermodynamic properties of two-dimensional transition-metal dichalcogenides (2D-TMDC) alloys, MoW(S, Se, Te), using the cluster expansion framework to compute the Helmholtz free energy of alloys as a function of alloy composition and temperature, in the framework of the generalized quasi-chemical approximation. We consider alloying only on the metal sublayer. Our results indicate a weak dependence of the structural properties (lattice constants, nearest-neighbor bond lengths, and layer width) on the alloy composition (i.
View Article and Find Full Text PDFIn this work, we explain the origin and the mechanism responsible for the strong enhancement of the Raman signal of sulfur chains encapsulated by single-wall carbon nanotubes by running resonance Raman measurements in a wide range of excitation energies for two nanotube samples with different diameter distributions. The Raman signal associated with the vibrational modes of the sulfur chain is observed when it is confined by small-diameter metallic nanotubes. Moreover, a strong enhancement of the Raman signal is observed for excitation energies corresponding to the formation of excited nanotube-chain-hybrid electronic states.
View Article and Find Full Text PDFIn this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction.
View Article and Find Full Text PDFWe report ab initio calculations showing that a one-dimensional extended defect generates topologically protected metallic states immersed in the bulk of two-dimensional topological insulators. We find that a narrow extended defect, composed of periodic units consisting of one octagonal and two pentagonal rings (a 558 extended defect), embedded in the hexagonal bulk of a bismuth bilayer, introduces two pairs of one-dimensional counterpropagating helical-Fermion electronic bands with the opposite spin-momentum locking characteristic of the topological metallic states that appear at the edges in two-dimensional topological insulators. Each one of these pairs of helical-Fermion bands is localized, respectively, along each one of the zigzag chains of bismuth atoms at the core of the 558 extended defect, and their hybridization leads to the opening of very small gaps (6 meV or less) in the helical-Fermion dispersions of these defect-related modes.
View Article and Find Full Text PDFHeteroepitaxy of two-dimensional (2D) crystals, such as hexagonal boron nitride (BN) on graphene (G), can occur at the edge of an existing heterointerface. Understanding strain relaxation at such 2D laterally fused interface is useful in fabricating heterointerfaces with a high degree of atomic coherency and structural stability. We use in situ scanning tunneling microscopy to study the 2D heteroepitaxy of BN on graphene edges on a Ru(0001) surface with the aim of understanding the propagation of interfacial strain.
View Article and Find Full Text PDF