The chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c.
View Article and Find Full Text PDFWe have compared the electrocatalytic activity of several substituted and unsubstituted Co and Fe N4-macrocyclic complexes (MN4) for the electro-reduction of oxygen with the complexes directly adsorbed on the edge plane of pyrolytic graphite or adsorbed on carbon nanotubes (CNTs). In the presence of CNTs, one order of magnitude higher surface concentrations of MN4 catalysts per geometric area unit could be adsorbed leading to a lower overpotential for the oxygen electro-reduction and activities in the same order of magnitude as the commercially available Pt/C catalysts in basic pH. From Koutecky-Levich regression analysis, the total number of electrons transferred was approximately 2 for all the Co complexes and 4 for all the Fe ones, both in the presence and in the absence of the carbon nanotubes.
View Article and Find Full Text PDFBackground: Eccrine poroma is a benign neoplasm that can mimick a malignant neoplasm dermoscopically. The characteristic vascular pattern of this tumor has not been established.
Objective: To evaluate dermoscopic features of non-pigmented eccrine poroma in Mexican patients.