Airy beams represent an important type of non-diffracting beams-they are the only non-diffracting wave in one dimension, and thus they can be produced with a cylindrical geometry that modifies a wavefront in one dimension. In this paper, we show the design of a cylindrical plasmonic metalens consisting of an array of nanoslits in a gold thin layer that modulates the phase of a Gaussian beam to generate an airy beam propagating in free space. Based on the numerical results, we show that it is possible to generate an airy beam by only matching the phase of wavefronts coming out from the array of gold nanoslits to the airy beam phase at plane z=0.
View Article and Find Full Text PDFIn this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal-dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface's reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes.
View Article and Find Full Text PDFThe growing development of nanotechnology requires the design of new devices that integrate different functionalities at a reduced scale. For on-chip applications such as optical communications or biosensing, it is necessary to selectively transmit a portion of the electromagnetic spectrum. This function is performed by the so-called band-pass filters.
View Article and Find Full Text PDFIn this contribution, we numerically demonstrate the generation of plasmonic transparency windows in the transmission spectrum of an integrated metaphotonic device. The hybrid photonic-plasmonic structure consists of two rectangular-shaped gold nanoparticles fully embedded in the core of a multimode dielectric optical waveguide, with their major axis aligned to the electric field lines of transverse electric guided modes. We show that these transparencies arise from different phenomena depending on the symmetry of the guided modes.
View Article and Find Full Text PDFIntegrated metaphotonic devices has opened new horizons to control light-guiding properties at nanoscale; particularly interesting is the application of plasmonic nanostructures coupled to dielectric waveguides to reduce the inherent light propagation losses in metallic metamaterials. In this contribution, we show the feasibility of using ion-exchanged glass waveguides (IExWg) as a platform for the efficient excitation of surface plasmon polaritons (SPP). These IExWg provide high coupling efficiency and low butt-coupling with conventional dielectric optical waveguides and fibers, overcoming the hard fabrication tunability of commonly used CMOS-guiding platforms.
View Article and Find Full Text PDFIntegrated optical devices able to control light-matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum.
View Article and Find Full Text PDFUsing numerical simulations, we demonstrate that the dipolar plasmonic resonance of a single metallic nanoparticle inserted in the core of a dielectric waveguide can be excited with higher order photonic modes of the waveguide only if their symmetry is compatible with the charge distribution of the plasmonic mode. For the case of a symmetric waveguide, we demonstrate that this condition is only achieved if the particle is shifted from the center of the core. The simple and comprehensive analysis presented in this contribution will serve as basis for applications in integrated nanophotonic/metamaterials devices, such as optical filters, modulators and mode converters.
View Article and Find Full Text PDF