Publications by authors named "Ricardo S Vieira-Pires"

Rickettsiae are obligate intracellular Gram-negative bacteria transmitted by arthropod vectors. Despite their reduced genomes, the function(s) of the majority of rickettsial proteins remains to be uncovered. APRc is a highly conserved retropepsin-type protease, suggested to act as a modulator of other rickettsial surface proteins with a role in adhesion/invasion.

View Article and Find Full Text PDF

Early diagnosis and treatment of parasitic diseases are indispensable to combat parasites mediated morbidity and mortality in humans and animals. Mammalian sourced antibodies are being successfully used in immunotherapy and immunoassays. However, their increased conservation amongst mammals, involves them in unnecessary interaction and immune mediated pathologies, obstructing their applications in certain approaches in immunoassays.

View Article and Find Full Text PDF

KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown.

View Article and Find Full Text PDF

In bacteria, archaea, fungi and plants the Trk, Ktr and HKT ion transporters are key components of osmotic regulation, pH homeostasis and resistance to drought and high salinity. These ion transporters are functionally diverse: they can function as Na(+) or K(+) channels and possibly as cation/K(+) symporters. They are closely related to potassium channels both at the level of the membrane protein and at the level of the cytosolic regulatory domains.

View Article and Find Full Text PDF

KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides.

View Article and Find Full Text PDF