Background: The novel oral poliovirus vaccine type 2 (nOPV2) is now authorised by a WHO emergency use listing and widely distributed to interrupt outbreaks of circulating vaccine-derived poliovirus type 2. As protection of vulnerable populations, particularly young infants, could be facilitated by shorter intervals between the two recommended doses, we aimed to assess safety and non-inferiority of immunogenicity of nOPV2 in 1-week, 2-week, and 4-week schedules.
Methods: In this phase 3, open-label, randomised trial, healthy, full-term, infants aged 6-8 weeks from a hospital or a clinic in the Dominican Republic were randomly allocated (1:1:1 ratio) using a pre-prepared, computer-generated randomisation schedule to three groups to receive two doses of nOPV2 immunisations with a 1-week interval (group A), 2-week interval (group B), or 4-week interval (group C).
Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence.
View Article and Find Full Text PDFBackground: Primary intestinal immunity through viral replication of live oral vaccine is key to interrupt poliovirus transmission. We assessed viral fecal shedding from infants administered Sabin monovalent poliovirus type 2 vaccine (mOPV2) or low and high doses of 2 novel OPV2 (nOPV2) vaccine candidates.
Methods: In 2 randomized clinical trials in Panama, a control mOPV2 study (October 2015 to April 2016) and nOPV2 study (September 2018 to October 2019), 18-week-old infants vaccinated with bivalent oral poliovirus vaccine/inactivated poliovirus vaccine received 1 or 2 study vaccinations 28 days apart.
Environmental surveillance was recommended for risk mitigation in a novel oral polio vaccine-2 (nOPV2) clinical trial (M5-ABMG) to monitor excretion, potential circulation, and loss of attenuation of the two nOPV2 candidates. The nOPV2 candidates were developed to address the risk of poliovirus (PV) type 2 circulating vaccine-derived poliovirus (cVDPV) as part of the global eradication strategy. Between November 2018 and January 2020, an environmental surveillance study for the clinical trial was conducted in parallel to the M5-ABMG clinical trial at five locations in Panama.
View Article and Find Full Text PDFSabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study.
View Article and Find Full Text PDFBackground: Continued emergence and spread of circulating vaccine-derived type 2 polioviruses and vaccine-associated paralytic poliomyelitis from Sabin oral poliovirus vaccines (OPVs) has stimulated development of two novel type 2 OPV candidates (OPV2-c1 and OPV2-c2) designed to have similar immunogenicity, improved genetic stability, and less potential to reacquire neurovirulence. We aimed to assess safety and immunogenicity of the two novel OPV candidates compared with a monovalent Sabin OPV in children and infants.
Methods: We did two single-centre, multi-site, partly-masked, randomised trials in healthy cohorts of children (aged 1-4 years) and infants (aged 18-22 weeks) in Panama: a control phase 4 study with monovalent Sabin OPV2 before global cessation of monovalent OPV2 use, and a phase 2 study with low and high doses of two novel OPV2 candidates.
Background: Following the global eradication of wild poliovirus, countries using live attenuated oral poliovirus vaccines will transition to exclusive use of inactivated poliovirus vaccine (IPV) or fractional doses of IPV (f-IPV; a f-IPV dose is one-fifth of a normal IPV dose), but IPV supply and cost constraints will necessitate dose-sparing strategies. We compared immunisation schedules of f-IPV and IPV to inform the choice of optimal post-eradication schedule.
Methods: This randomised open-label, multicentre, phase 3, non-inferiority trial was done at two centres in Panama and one in the Dominican Republic.
Background: Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)-immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks.
Methods: In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1-5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination.
Background: Quantifying interference of maternal antibodies with immune responses to varying dose schedules of inactivated polio vaccine (IPV) is important for the polio endgame as IPV replaces oral polio vaccine (OPV).
Methods: Type 2 poliovirus humoral and intestinal responses were analyzed using pre-IPV type 2 seropositivity as proxy for maternal antibodies from 2 trials in Latin America. Infants received 1 or 2 doses of IPV in sequential IPV-bivalent oral polio vaccine (bOPV) or mixed bOPV-IPV schedules.
An improved quantitative multiplex one-step RT-PCR (qmosRT-PCR) for simultaneous identification and quantitation of all three serotypes of poliovirus is described. It is based on using serotype-specific primers and fluorescent TaqMan oligonucleotide probes. The assay can be used for high-throughput screening of samples for the presence of poliovirus, poliovirus surveillance and for evaluation of virus shedding by vaccine recipients in clinical trials to assess mucosal immunity.
View Article and Find Full Text PDFBackground: Inactivated polio vaccine (IPV) is now the only source of routine type 2 protection. The relationship, if any, between vaccine-induced type 2 humoral and intestinal immunity is poorly understood.
Methods: Two clinical trials in five Latin American countries of mixed or sequential bOPV-IPV schedules in 1640 infants provided data on serum neutralizing antibodies (NAb) and intestinal immunity, assessed as viral shedding following oral mOPV2 challenge.
Background: Since April 2016 inactivated poliovirus vaccine (IPV) has been the only routine source of polio type 2 protection worldwide. With IPV supply constraints, data on comparability of immunogenicity and safety will be important to optimally utilize available supplies from different manufacturers.
Methods: In this multicenter phase IV study, 900 Latin American infants randomly assigned to six study groups received three doses of bOPV at 6, 10 and 14weeks and either one IPV dose at 14weeks (groups SP-1, GSK-1 and BBio-1) or two IPV doses at 14 and 36weeks (groups SP-2, GSK-2 and BBio-2) from three different manufacturers.
Background: Meningococcal disease (MD) is a medical emergency and a serious public health problem. As new meningococcal vaccines become available, MD surveillance is crucial to provide baseline epidemiologic data before implementing preventive measures. We estimated MD incidence and epidemiology in Argentina using hospital-based surveillance.
View Article and Find Full Text PDFBackground: Identification of mechanisms that limit poliovirus replication is crucial for informing decisions aimed at global polio eradication. Studies of mucosal immunity induced by oral poliovirus (OPV) or inactivated poliovirus (IPV) vaccines and mixed schedules thereof will determine the effectiveness of different vaccine strategies to block virus shedding. We used samples from a clinical trial of different vaccination schedules to measure intestinal immunity as judged by neutralisation of virus and virus-specific IgA in stools.
View Article and Find Full Text PDFTher Adv Vaccines
January 2016
Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals.
View Article and Find Full Text PDFBackground: Replacement of the trivalent oral poliovirus vaccine (tOPV) with bivalent types 1 and 3 oral poliovirus vaccine (bOPV) and global introduction of inactivated poliovirus vaccine (IPV) are major steps in the polio endgame strategy. In this study, we assessed humoral and intestinal immunity in Latin American infants after three doses of bOPV combined with zero, one, or two doses of IPV.
Methods: This open-label randomised controlled multicentre trial was part of a larger study.
Background: Bivalent oral poliovirus vaccine (bOPV; types 1 and 3) is expected to replace trivalent OPV (tOPV) globally by April, 2016, preceded by the introduction of at least one dose of inactivated poliovirus vaccine (IPV) in routine immunisation programmes to eliminate vaccine-associated or vaccine-derived poliomyelitis from serotype 2 poliovirus. Because data are needed on sequential IPV-bOPV schedules, we assessed the immunogenicity of two different IPV-bOPV schedules compared with an all-IPV schedule in infants.
Methods: We did a randomised, controlled, open-label, non-inferiority trial with healthy, full-term (>2·5 kg birthweight) infants aged 8 weeks (± 7 days) at six well-child clinics in Santiago, Chile.
Invasive meningococcal disease is a serious infection that occurs worldwide. Neisseria meningitidis remains one of the leading causes of bacterial meningitis in all ages. Despite the availability of safe and effective vaccines against invasive meningococcal disease, few countries in Latin America implemented routine immunization programs with these vaccines.
View Article and Find Full Text PDFRev Panam Salud Publica
June 2013
Influenza exacts a heavy burden on the elderly, a segment of the population that is estimated to experience rapid growth in the near future. In the past decade most developed and several developing countries have recommended influenza vaccination for those > 65 years of age. The World Health Organization (WHO) set a goal of 75% influenza vaccination coverage among the elderly by 2010, but it was not achieved.
View Article and Find Full Text PDFBackground: Intussusception (IS) is a form of acute intestinal obstruction that occurs mainly in infants and is usually of unknown cause. An association between IS and the first licensed rotavirus vaccine, a reassortant-tetravalent, rhesus-based rotavirus vaccine (RRV-TV), led to the withdrawal of the vaccine. New rotavirus vaccines have now been developed and extensively studied for their potential association with IS.
View Article and Find Full Text PDFIn Latin America, adult influenza is a serious disease that exacts a heavy burden in terms of morbidity, mortality, and cost. Although much has been written about the disease itself, relatively little information has been compiled on what could be done to reduce its impact across the region, particularly from the perspective of clinicians with first-hand experience in confronting its effects. To fill this data gap, in 2011, the Pan American Health and Education Foundation (PAHEF) and the U.
View Article and Find Full Text PDF